Deep Learning Strategies For Security Enhancement In Wireless Sensor Networks

Download Deep Learning Strategies For Security Enhancement In Wireless Sensor Networks PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Deep Learning Strategies For Security Enhancement In Wireless Sensor Networks book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Deep Learning Strategies for Security Enhancement in Wireless Sensor Networks

Wireless sensor networks have gained significant attention industrially and academically due to their wide range of uses in various fields. Because of their vast amount of applications, wireless sensor networks are vulnerable to a variety of security attacks. The protection of wireless sensor networks remains a challenge due to their resource-constrained nature, which is why researchers have begun applying several branches of artificial intelligence to advance the security of these networks. Research is needed on the development of security practices in wireless sensor networks by using smart technologies. Deep Learning Strategies for Security Enhancement in Wireless Sensor Networks provides emerging research exploring the theoretical and practical advancements of security protocols in wireless sensor networks using artificial intelligence-based techniques. Featuring coverage on a broad range of topics such as clustering protocols, intrusion detection, and energy harvesting, this book is ideally designed for researchers, developers, IT professionals, educators, policymakers, practitioners, scientists, theorists, engineers, academicians, and students seeking current research on integrating intelligent techniques into sensor networks for more reliable security practices.
Machine Learning and Deep Learning in Medical Data Analytics and Healthcare Applications

Machine Learning and Deep Learning in Medical Data Analytics and Healthcare Applications introduces and explores a variety of schemes designed to empower, enhance, and represent multi-institutional and multi-disciplinary machine learning (ML) and deep learning (DL) research in healthcare paradigms. Serving as a unique compendium of existing and emerging ML/DL paradigms for the healthcare sector, this book demonstrates the depth, breadth, complexity, and diversity of this multi-disciplinary area. It provides a comprehensive overview of ML/DL algorithms and explores the related use cases in enterprises such as computer-aided medical diagnostics, drug discovery and development, medical imaging, automation, robotic surgery, electronic smart records creation, outbreak prediction, medical image analysis, and radiation treatments. This book aims to endow different communities with the innovative advances in theory, analytical results, case studies, numerical simulation, modeling, and computational structuring in the field of ML/DL models for healthcare applications. It will reveal different dimensions of ML/DL applications and will illustrate their use in the solution of assorted real-world biomedical and healthcare problems. Features: Covers the fundamentals of ML and DL in the context of healthcare applications Discusses various data collection approaches from various sources and how to use them in ML/DL models Integrates several aspects of AI-based computational intelligence such as ML and DL from diversified perspectives which describe recent research trends and advanced topics in the field Explores the current and future impacts of pandemics and risk mitigation in healthcare with advanced analytics Emphasizes feature selection as an important step in any accurate model simulation where ML/DL methods are used to help train the system and extract the positive solution implicitly This book is a valuable source of information for researchers, scientists, healthcare professionals, programmers, and graduate-level students interested in understanding the applications of ML/DL in healthcare scenarios. Dr. Om Prakash Jena is an Assistant Professor in the Department of Computer Science, Ravenshaw University, Cuttack, Odisha, India. Dr. Bharat Bhushan is an Assistant Professor of Department of Computer Science and Engineering (CSE) at the School of Engineering and Technology, Sharda University, Greater Noida, India. Dr. Utku Kose is an Associate Professor in Suleyman Demirel University, Turkey.
Fusion of Artificial Intelligence and Machine Learning in Advanced Image Processing

This book focuses on the fusion of artificial intelligence and machine learning in advanced image processing, data analysis, and cyber security, as well as compiles and discusses various engineering solutions using various artificial intelligence paradigms. It looks at recent technological advancements and considers how artificial intelligence, machine learning, deep learning, soft computing, and evolutionary computing techniques can be used to design, implement, and optimize advanced image processing, data analysis, and cyber security engineering solutions. It will readers develop the insight required to use the tools of digital imaging to solve new problems. The book is divided into sections that deal with Artificial intelligence and machine learning in medicine and healthcare Intelligent decision-making and analysis technology Machine learning and deep learning for agriculture Artificial intelligence and machine learning for security solutions Automation in image processing Fusion of Artificial Intelligence and Machine Learning for Advanced Image Processing, Data Analysis, and Cyber Security offers a selection of chapters on the application of artificial intelligence and machine learning for advanced image processing, data analysis, and cyber security. This book will surely enhance the knowledge of readers interested in these areas.