Deep Learning Models And Its Application An Overview With The Help Of R Software Second In Series Machine Learning


Download Deep Learning Models And Its Application An Overview With The Help Of R Software Second In Series Machine Learning PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Deep Learning Models And Its Application An Overview With The Help Of R Software Second In Series Machine Learning book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Deep Learning Models and its application: An overview with the help of R software: Second in series (Machine Learning)


Deep Learning Models and its application: An overview with the help of R software: Second in series (Machine Learning)

Author: Editor IJSMI

language: en

Publisher: International Journal of Statistics and Medical Informatics

Release Date: 2019-02-09


DOWNLOAD





Deep Learning Models and its application: An overview with the help of R softwarePrefaceDeep learning models are widely used in different fields due to its capability to handle large and complex datasets and produce the desired results with more accuracy at a greater speed. In Deep learning models, features are selected automatically through the iterative process wherein the model learns the features by going deep into the dataset and selects the features to be modeled. In the traditional models the features of the dataset needs to be specified in advance. The Deep Learning algorithms are derived from Artificial Neural Network concepts and it is a part of broader Machine Learning Models. This book intends to provide an overview of Deep Learning models, its application in the areas of image recognition & classification, sentiment analysis, natural language processing, stock market prediction using R statistical software package, an open source software package. The book also includes an introduction to python software package which is also open source software for the benefit of the users.This books is a second book in series after the author’s first book- Machine Learning: An Overview with the Help of R Software https://www.amazon.com/dp/B07KQSN447EditorInternational Journal of Statistics and Medical Informaticswww.ijsmi.com/book.php

Deep Learning Models explored with help of Python Programming


Deep Learning Models explored with help of Python Programming

Author: Editor IJSMI

language: en

Publisher: International Journal of Statistics and Medical Informatics

Release Date: 2020-11-04


DOWNLOAD





This is the second book in the Deep Learning models series by the author. Deep learning models are widely used in different fields due to its capability to handle large and complex datasets and produce the desired results with more accuracy at a greater speed. In Deep learning models, features are selected automatically through the iterative process wherein the model learns the features by going deep into the dataset and selects the features to be modeled. In the traditional models the features of the dataset needs to be specified in advance. The Deep Learning algorithms are derived from Artificial Neural Network concepts and it is a part of broader Machine Learning Models. The book starts with the Introduction part which is adopted from Author’s Deep Learning Models and its application: An overview with the help of R software book and move on to the Python’s important data processing packages such Numpy, and Pandas. Book then explores the Deep Learning models with the help of packages such as Pytorch, Tensor Flow and Keras and their applications in image processing, stock market prediction, recommender systems and natural language processing. Editor International Journal of Statistics and Medical Informatics www.ijsmi.com/book.php ISBN: 9798558877953 E-Books: https://www.amazon.com/dp/B08MQTM1ZP Paperbacks: https://www.amazon.com/dp/B08MSQ3R8R

Hands-On Machine Learning with R


Hands-On Machine Learning with R

Author: Brad Boehmke

language: en

Publisher: CRC Press

Release Date: 2019-11-07


DOWNLOAD





Hands-on Machine Learning with R provides a practical and applied approach to learning and developing intuition into today’s most popular machine learning methods. This book serves as a practitioner’s guide to the machine learning process and is meant to help the reader learn to apply the machine learning stack within R, which includes using various R packages such as glmnet, h2o, ranger, xgboost, keras, and others to effectively model and gain insight from their data. The book favors a hands-on approach, providing an intuitive understanding of machine learning concepts through concrete examples and just a little bit of theory. Throughout this book, the reader will be exposed to the entire machine learning process including feature engineering, resampling, hyperparameter tuning, model evaluation, and interpretation. The reader will be exposed to powerful algorithms such as regularized regression, random forests, gradient boosting machines, deep learning, generalized low rank models, and more! By favoring a hands-on approach and using real word data, the reader will gain an intuitive understanding of the architectures and engines that drive these algorithms and packages, understand when and how to tune the various hyperparameters, and be able to interpret model results. By the end of this book, the reader should have a firm grasp of R’s machine learning stack and be able to implement a systematic approach for producing high quality modeling results. Features: · Offers a practical and applied introduction to the most popular machine learning methods. · Topics covered include feature engineering, resampling, deep learning and more. · Uses a hands-on approach and real world data.