Deep Learning Made Easy With R


Download Deep Learning Made Easy With R PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Deep Learning Made Easy With R book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Deep Learning Made Easy with R


Deep Learning Made Easy with R

Author: N. D. Lewis

language: en

Publisher: Createspace Independent Publishing Platform

Release Date: 2016-01-10


DOWNLOAD





Master Deep Learning with this fun, practical, hands on guide. With the explosion of big data deep learning is now on the radar. Large companies such as Google, Microsoft, and Facebook have taken notice, and are actively growing in-house deep learning teams. Other large corporations are quickly building out their own teams. If you want to join the ranks of today's top data scientists take advantage of this valuable book. It will help you get started. It reveals how deep learning models work, and takes you under the hood with an easy to follow process showing you how to build them faster than you imagined possible using the powerful, free R predictive analytics package. Bestselling decision scientist Dr. N.D Lewis shows you the shortcut up the steep steps to the very top. It's easier than you think. Through a simple to follow process you will learn how to build the most successful deep learning models used for learning from data. Once you have mastered the process, it will be easy for you to translate your knowledge into your own powerful applications. If you want to accelerate your progress, discover the best in deep learning and act on what you have learned, this book is the place to get started. YOU'LL LEARN HOW TO: Understand Deep Neural Networks Use Autoencoders Unleash the power of Stacked Autoencoders Leverage the Restricted Boltzmann Machine Develop Recurrent Neural Networks Master Deep Belief Networks Everything you need to get started is contained within this book. It is your detailed, practical, tactical hands on guide - the ultimate cheat sheet for deep learning mastery. A book for everyone interested in machine learning, predictive analytic techniques, neural networks and decision science. Start building smarter models today using R! Buy the book today. Your next big breakthrough using deep learning is only a page away!

Machine Learning Made Easy with R


Machine Learning Made Easy with R

Author: N. Lewis

language: en

Publisher:

Release Date: 2017-05-07


DOWNLOAD





Finally, A Blueprint for Machine Learning with R! Machine Learning Made Easy with R offers a practical tutorial that uses hands-on examples to step through real-world applications using clear and practical case studies. Through this process it takes you on a gentle, fun and unhurried journey to creating machine learning models with R. Whether you are new to data science or a veteran, this book offers a powerful set of tools for quickly and easily gaining insight from your data using R. NO EXPERIENCE REQUIRED: This book uses plain language rather than a ton of equations; I'm assuming you never did like linear algebra, don't want to see things derived, dislike complicated computer code, and you're here because you want to try successful machine learning algorithms for yourself. YOUR PERSONAL BLUE PRINT: Through a simple to follow intuitive step by step process, you will learn how to use the most popular machine learning algorithms using R. Once you have mastered the process, it will be easy for you to translate your knowledge to assess your own data. THIS BOOK IS FOR YOU IF YOU WANT: Focus on explanations rather than mathematical derivation Practical illustrations that use real data. Illustrations to deepen your understanding. Worked examples in R you can easily follow and immediately implement. Ideas you can actually use and try on your own data. TAKE THE SHORTCUT: This guide was written for people just like you. Individuals who want to get up to speed as quickly as possible. to: YOU'LL LEARN HOW TO: Unleash the power of Decision Trees. Develop hands on skills using k-Nearest Neighbors. Design successful applications with Naive Bayes. Deploy Linear Discriminant Analysis. Explore Support Vector Machines. Master Linear and logistic regression. Create solutions with Random Forests. Solve complex problems with Boosting. Gain deep insights via K-Means clustering. Acquire tips to enhance model performance. For each machine learning algorithm, every step in the process is detailed, from preparing the data for analysis, to evaluating the results. These steps will build the knowledge you need to apply them to your own data science tasks. Using plain language, this book offers a simple, intuitive, practical, non-mathematical, easy to follow guide to the most successful ideas, outstanding techniques and usable solutions available using R. Everything you need to get started is contained within this book. Machine Learning Made Easy with R is your very own hands on practical, tactical, easy to follow guide to mastery. Buy this book today and accelerate your progress!

Hands-On Machine Learning with R


Hands-On Machine Learning with R

Author: Brad Boehmke

language: en

Publisher: CRC Press

Release Date: 2019-11-07


DOWNLOAD





Hands-on Machine Learning with R provides a practical and applied approach to learning and developing intuition into today’s most popular machine learning methods. This book serves as a practitioner’s guide to the machine learning process and is meant to help the reader learn to apply the machine learning stack within R, which includes using various R packages such as glmnet, h2o, ranger, xgboost, keras, and others to effectively model and gain insight from their data. The book favors a hands-on approach, providing an intuitive understanding of machine learning concepts through concrete examples and just a little bit of theory. Throughout this book, the reader will be exposed to the entire machine learning process including feature engineering, resampling, hyperparameter tuning, model evaluation, and interpretation. The reader will be exposed to powerful algorithms such as regularized regression, random forests, gradient boosting machines, deep learning, generalized low rank models, and more! By favoring a hands-on approach and using real word data, the reader will gain an intuitive understanding of the architectures and engines that drive these algorithms and packages, understand when and how to tune the various hyperparameters, and be able to interpret model results. By the end of this book, the reader should have a firm grasp of R’s machine learning stack and be able to implement a systematic approach for producing high quality modeling results. Features: · Offers a practical and applied introduction to the most popular machine learning methods. · Topics covered include feature engineering, resampling, deep learning and more. · Uses a hands-on approach and real world data.