Deep Learning In Time Series Analysis

Download Deep Learning In Time Series Analysis PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Deep Learning In Time Series Analysis book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Deep Learning for Time Series Forecasting

Author: Jason Brownlee
language: en
Publisher: Machine Learning Mastery
Release Date: 2018-08-30
Deep learning methods offer a lot of promise for time series forecasting, such as the automatic learning of temporal dependence and the automatic handling of temporal structures like trends and seasonality. With clear explanations, standard Python libraries, and step-by-step tutorial lessons you’ll discover how to develop deep learning models for your own time series forecasting projects.
Time Series Forecasting using Deep Learning

Explore the infinite possibilities offered by Artificial Intelligence and Neural Networks KEY FEATURES ● Covers numerous concepts, techniques, best practices and troubleshooting tips by community experts. ● Includes practical demonstration of robust deep learning prediction models with exciting use-cases. ● Covers the use of the most powerful research toolkit such as Python, PyTorch, and Neural Network Intelligence. DESCRIPTION This book is amid at teaching the readers how to apply the deep learning techniques to the time series forecasting challenges and how to build prediction models using PyTorch. The readers will learn the fundamentals of PyTorch in the early stages of the book. Next, the time series forecasting is covered in greater depth after the programme has been developed. You will try to use machine learning to identify the patterns that can help us forecast the future results. It covers methodologies such as Recurrent Neural Network, Encoder-decoder model, and Temporal Convolutional Network, all of which are state-of-the-art neural network architectures. Furthermore, for good measure, we have also introduced the neural architecture search, which automates searching for an ideal neural network design for a certain task. Finally by the end of the book, readers would be able to solve complex real-world prediction issues by applying the models and strategies learnt throughout the course of the book. This book also offers another great way of mastering deep learning and its various techniques. WHAT YOU WILL LEARN ● Work with the Encoder-Decoder concept and Temporal Convolutional Network mechanics. ● Learn the basics of neural architecture search with Neural Network Intelligence. ● Combine standard statistical analysis methods with deep learning approaches. ● Automate the search for optimal predictive architecture. ● Design your custom neural network architecture for specific tasks. ● Apply predictive models to real-world problems of forecasting stock quotes, weather, and natural processes. WHO THIS BOOK IS FOR This book is written for engineers, data scientists, and stock traders who want to build time series forecasting programs using deep learning. Possessing some familiarity of Python is sufficient, while a basic understanding of machine learning is desirable but not needed. TABLE OF CONTENTS 1. Time Series Problems and Challenges 2. Deep Learning with PyTorch 3. Time Series as Deep Learning Problem 4. Recurrent Neural Networks 5. Advanced Forecasting Models 6. PyTorch Model Tuning with Neural Network Intelligence 7. Applying Deep Learning to Real-world Forecasting Problems 8. PyTorch Forecasting Package 9. What is Next?
Deep Learning in Time Series Analysis

Deep learning is an important element of artificial intelligence, especially in applications such as image classification in which various architectures of neural network, e.g., convolutional neural networks, have yielded reliable results. This book introduces deep learning for time series analysis, particularly for cyclic time series. It elaborates on the methods employed for time series analysis at the deep level of their architectures. Cyclic time series usually have special traits that can be employed for better classification performance. These are addressed in the book. Processing cyclic time series is also covered herein. An important factor in classifying stochastic time series is the structural risk associated with the architecture of classification methods. The book addresses and formulates structural risk, and the learning capacity defined for a classification method. These formulations and the mathematical derivations will help the researchers in understanding the methods and even express their methodologies in an objective mathematical way. The book has been designed as a self-learning textbook for the readers with different backgrounds and understanding levels of machine learning, including students, engineers, researchers, and scientists of this domain. The numerous informative illustrations presented by the book will lead the readers to a deep level of understanding about the deep learning methods for time series analysis.