Deep Learning In Medical Signal And Image Processing


Download Deep Learning In Medical Signal And Image Processing PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Deep Learning In Medical Signal And Image Processing book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Signal and Image Processing Techniques for the Development of Intelligent Healthcare Systems


Signal and Image Processing Techniques for the Development of Intelligent Healthcare Systems

Author: E. Priya

language: en

Publisher: Springer Nature

Release Date: 2020-09-21


DOWNLOAD





This book comprehensively reviews the various automated and semi-automated signal and image processing techniques, as well as deep-learning-based image analysis techniques, used in healthcare diagnostics. It highlights a range of data pre-processing methods used in signal processing for effective data mining in remote healthcare, and discusses pre-processing using filter techniques, noise removal, and contrast-enhanced methods for improving image quality. The book discusses the status quo of artificial intelligence in medical applications, as well as its future. Further, it offers a glimpse of feature extraction methods for reducing dimensionality and extracting discriminatory information hidden in biomedical signals. Given its scope, the book is intended for academics, researchers and practitioners interested in the latest real-world technological innovations.

Deep Learning in Medical Signal and Image Processing


Deep Learning in Medical Signal and Image Processing

Author: Aamir, Muhammad

language: en

Publisher: IGI Global

Release Date: 2025-05-23


DOWNLOAD





Deep learning is revolutionizing the analysis of medical signals and images, offering unprecedented advancements in diagnostic accuracy and efficiency. Techniques such as convolutional and recurrent neural networks are transforming the processing of radiological scans, ultrasound images, and ECG readings. By enabling more detailed and precise interpretations, deep learning enhances the ability of healthcare providers to make timely and informed decisions. These innovations are reshaping medical workflows, improving patient outcomes, and paving the way for a future of more reliable and efficient healthcare solutions. Deep Learning in Medical Signal and Image Processing offers a comprehensive examination of deep learning, specifically through convolutional neural networks (CNNs) and recurrent neural networks (RNNs), to medical data. It explores the application of AI in the analysis of medical signals and images. Covering topics such as diagnostic accuracy, enhanced decision-making, and data augmentation techniques, this book is an excellent resource for medical practitioners, clinicians, data scientists, AI researchers, healthcare professionals, engineers, professionals, researchers, scholars, academicians, and more.

Deep Learning for Medical Image Analysis


Deep Learning for Medical Image Analysis

Author: S. Kevin Zhou

language: en

Publisher: Academic Press

Release Date: 2017-01-18


DOWNLOAD





Deep learning is providing exciting solutions for medical image analysis problems and is seen as a key method for future applications. This book gives a clear understanding of the principles and methods of neural network and deep learning concepts, showing how the algorithms that integrate deep learning as a core component have been applied to medical image detection, segmentation and registration, and computer-aided analysis, using a wide variety of application areas. Deep Learning for Medical Image Analysis is a great learning resource for academic and industry researchers in medical imaging analysis, and for graduate students taking courses on machine learning and deep learning for computer vision and medical image computing and analysis. Covers common research problems in medical image analysis and their challenges Describes deep learning methods and the theories behind approaches for medical image analysis Teaches how algorithms are applied to a broad range of application areas, including Chest X-ray, breast CAD, lung and chest, microscopy and pathology, etc. Includes a Foreword written by Nicholas Ayache