Deep Learning In Genetics And Genomics

Download Deep Learning In Genetics And Genomics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Deep Learning In Genetics And Genomics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Deep Learning in Genetics and Genomics

Deep Learning in Genetics and Genomics vol. 1, Foundations and Applications, the intersection of deep learning and genetics opens up new avenues for advancing our understanding of the genetic code, gene regulation, and the broader genomics landscape. The book not only covers the most up-to-date advancements in the field of deep learning in genetics and genomics, but also a wide spectrum of (sub) topics including medical and clinical genetics, predictive medicine, transcriptomic, and gene expression studies. In 21 chapters Deep Learning in Genetics and Genomics vol. 1, Foundations and Applications describes how AI and DL have become increasingly useful in genetics and genomics research where both play a crucial role by accelerating research, improving the understanding of the human genome, and enabling personalized healthcare. From the fundamentals concepts and practical applications of deep learning algorithms to a wide range of challenging problems from genetics and genomics, Deep Learning in Genetics and Genomics vol. 1, Foundations and Applications creates a better knowledge of the biological and genetics mechanisms behind disease illnesses and improves the forecasting abilities using the different methodologies described. This title offers a unique resource for wider, deeper, and in-depth coverage of recent advancement in deep learning-based approaches in genetics and genomics, helping researchers process and interpret vast amounts of genetic data, identify patterns, and make discoveries that would be challenging or impossible using traditional methods. - Brings together fundamental concepts of genetics, genomics, and deep learning - Includes how to build background of solution methodologies and design of mathematical and logical algorithms - Delves into the intersection of deep learning and genetics, offering a comprehensive exploration of how deep learning techniques can be applied to various aspects of genomics
Deep Learning in Genetics and Genomics

Deep Learning in Genetics and Genomics: Vol. 2 (Advanced Applications) delves into the Deep Learning methods and their applications in various fields of studies, including genetics and genomics, bioinformatics, health informatics and medical informatics generating the momentum of today's developments in the field. In 25 chapters this title covers advanced applications in the field which includes deep learning in predictive medicines), analysis of genetic and clinical features, transcriptomics and gene expression patterns analysis, clinical decision support in genetic diagnostics, deep learning in personalised genomics and gene editing, and understanding genetic discoveries through Explainable AI. Further, it also covers various deep learning-based case studies, making this book a unique resource for wider, deeper, and in-depth coverage of recent advancement in deep learning based approaches. This volume is not only a valuable resource for health educators, clinicians, and healthcare professionals but also to graduate students of genetics, genomics, biology, biostatistics, biomedical sciences, bioinformatics, and interdisciplinary sciences. - Embraces the potential that deep learning holds for understanding genome biology - Encourages further advances in this area, extending to all aspects of genomics research - Provides Deep Learning algorithms in genetic and genomic research
Deep Learning for the Life Sciences

Deep learning has already achieved remarkable results in many fields. Now it’s making waves throughout the sciences broadly and the life sciences in particular. This practical book teaches developers and scientists how to use deep learning for genomics, chemistry, biophysics, microscopy, medical analysis, and other fields. Ideal for practicing developers and scientists ready to apply their skills to scientific applications such as biology, genetics, and drug discovery, this book introduces several deep network primitives. You’ll follow a case study on the problem of designing new therapeutics that ties together physics, chemistry, biology, and medicine—an example that represents one of science’s greatest challenges. Learn the basics of performing machine learning on molecular data Understand why deep learning is a powerful tool for genetics and genomics Apply deep learning to understand biophysical systems Get a brief introduction to machine learning with DeepChem Use deep learning to analyze microscopic images Analyze medical scans using deep learning techniques Learn about variational autoencoders and generative adversarial networks Interpret what your model is doing and how it’s working