Deep Learning In Aging Neuroscience

Download Deep Learning In Aging Neuroscience PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Deep Learning In Aging Neuroscience book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Deep Learning in Aging Neuroscience

This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact.
Computational Intelligence and Deep Learning Methods for Neuro-rehabilitation Applications

Computational Intelligence and Deep Learning Methods for Neuro-rehabilitation Applications explores the different possibilities of providing AI based neuro-rehabilitation methods to treat neurological disorders. This book provides in-depth knowledge on the challenges and solutions associated with the different varieties of neuro-rehabilitation through the inclusion of case studies and real-time scenarios in different geographical locations. Beginning with an overview of neuro-rehabilitation applications, the book discusses the role of machine learning methods in brain function grading for adults with Mild Cognitive Impairment, Brain Computer Interface for post-stroke patients, developing assistive devices for paralytic patients, and cognitive treatment for spinal cord injuries. Topics also include AI-based video games to improve the brain performances in children with autism and ADHD, deep learning approaches and magnetoencephalography data for limb movement, EEG signal analysis, smart sensors, and the application of robotic concepts for gait control. - Incorporates artificial intelligence techniques into neuro-rehabilitation and presents novel ideas for this process - Provides in-depth case studies and state-of-the-art methods, along with the experimental study - Presents a block diagram based complete set-up in each chapter to help in real-time implementation
Machine Learning for Neurodegenerative Disorders

This book explores the application of machine learning to the understanding, early diagnosis, and management of neurodegenerative disorders. With a specific focus on its role in ongoing clinical trials, the book covers essential topics such as data collection, pre-processing, feature extraction, model development, and validation techniques. It delves into the applications of neuroimaging techniques like magnetic resonance imaging (MRI), computed tomography (CT), and positron emission tomography (PET) in the diagnosis and understanding of neurodegenerative disorders. Additionally, the book examines various machine-learning algorithms employed for biomarker discovery in neurodegenerative disorders. It highlights the role of neuroinformatics and big data analysis in advancing the understanding and management of neurodegenerative disorders. Furthermore, the book reviews future prospects and presents the ethical considerations and regulatory challenges associated with implementing machine learning approaches in the diagnosis, treatment, and prevention of neurodegenerative disorders. This comprehensive resource is intended for neuroscientists, students, researchers, and neurologists to understand the emerging scope of machine learning in neurodegenerative disorders.