Deep Learning Fundamentals

Download Deep Learning Fundamentals PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Deep Learning Fundamentals book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Deep Learning for Beginners

☆★The Best Deep Learning Book for Beginners★☆ If you are looking for a complete beginners guide to learn deep learning with examples, in just a few hours, then you need to continue reading. This book delves into the basics of deep learning for those who are enthusiasts concerning all things machine learning and artificial intelligence. For those who have seen movies which show computer systems taking over the world like, Terminator, or benevolent systems that watch over the population, i.e. Person of Interest, this should be right up your alley. This book will give you the basics of what deep learning entails. That means frameworks used by coders and significant components and tools used in deep learning, that enable facial recognition, speech recognition, and virtual assistance. Yes, deep learning provides the tools through which systems like Siri became possible. ★★ Grab your copy today and learn ★★ ♦ Deep learning utilizes frameworks which allow people to develop tools which are able to offer better abstraction, along with simplification of hard programming issues. TensorFlow is the most popular tool and is used by corporate giants such as Airbus, Twitter, and even Google. ♦ The book illustrates TensorFlow and Caffe2 as the prime frameworks that are used for development by Google and Facebook. Facebook illustrates Caffe2 as one of the lightweight and modular deep learning frameworks, though TensorFlow is the most popular one, considering it has a lot of popularity, and thus, a big forum, which allows for assistance on main problems. ♦ The book considers several components and tools of deep learning such as the neural networks; CNNs, RNNs, GANs, and auto-encoders. These algorithms create the building blocks which propel deep learning and advance it. ♦ The book also considers several applications, including chatbots and virtual assistants, which have become the main focus for deep learning into the future, as they represent the next frontier in information gathering and connectivity. The Internet of Things is also represented here, as deep learning allows for the integration of various systems via an artificial intelligence system, which is already being used for the home and car functions. ♦ And much more... The use of data science adds a lot of value to businesses, and we will continue to see the need for data scientists grow. This book is probably one of the best books for beginners. It's a step-by-step guide for any person who wants to start learning deep learning and artificial intelligence from scratch. When data science can reduce spending costs by billions of dollars in the healthcare industry, why wait to jump in? If you want to get started on deep learning and the concepts that run artificial technologies, don't wait any longer. Scroll up and click the buy now button to get this book today!
Deep Learning Fundamentals

Author: Chao Pan
language: en
Publisher: Createspace Independent Publishing Platform
Release Date: 2016-06-15
This book is the first part of the book deep learning with Python write by the same author. If you already purchased deep learning with Python by Chao Pan no need for this book. Are you thinking of learning deep Learning fundamentals, concepts and algorithms? (For Beginners) If you are looking for a complete beginners guide to learn deep learning with examples, in just a few hours, this book is for you. From AI Sciences Publisher Our books may be the best one for beginners; it's a step-by-step guide for any person who wants to start learning Artificial Intelligence and Data Science from scratch. It will help you in preparing a solid foundation and learn any other high-level courses.To get the most out of the concepts that would be covered, readers are advised to adopt hands on approach, which would lead to better mental representations. Step By Step Guide and Visual Illustrations and Examples This book and the accompanying examples, you would be well suited to tackle problems, which pique your interests using machine learning and deep learning models. Instead of tough math formulas, this book contains several graphs and images. Book Objectives Have an appreciation for deep learning and an understanding of their fundamental principles. Have an elementary grasp of deep learning concepts and algorithms. Have achieved a technical background in deep learning and neural networks. Target Users The most suitable users would include: Anyone who is intrigued by how algorithms arrive at predictions but has no previous knowledge of the field. Software developers and engineers with a strong programming background but seeking to break into the field of machine learning. Seasoned professionals in the field of artificial intelligence and machine learning who desire a bird's eye view of current techniques and approaches. What's Inside This Book? Introduction Teaching Approach What is Artificial Intelligence, Machine Learning and Deep Learning? Mathematical Foundations of Deep Learning Machine Learning Fundamentals Fully Connected Neural Networks Convolutional Neural Networks Recurrent Neural Networks Generative Adversarial Networks Deep Reinforcement Learning Introduction to Deep Neural Networks with Keras Sources & References Frequently Asked Questions Q: Is this book for me and do I need programming experience?A: if you want to smash deep learning from scratch, this book is for you. No programming experience is required. The present only the fundamentals concepts and algorithms of deep learning. It ll be a good introduction for beginners.Q: Can I loan this book to friends?A: Yes. Under Amazon's Kindle Book Lending program, you can lend this book to friends and family for a duration of 14 days.Q: Does this book include everything I need to become a Machine Learning expert?A: Unfortunately, no. This book is designed for readers taking their first steps in Deep Learning and further learning will be required beyond this book to master all aspects.Q: Can I have a refund if this book is not fitted for me?A: Yes, Amazon refund you if you aren't satisfied, for more information about the amazon refund service please go to the amazon help platform. We will also be happy to help you if you send us an email at [email protected].
Mastering Deep Learning Fundamentals with Python

Author: Richard Wilson
language: en
Publisher: Independently Published
Release Date: 2019-07-14
★★Buy the Paperback Version of this Book and get the Kindle Book version for FREE ★★ Step into the fascinating world of data science.. You to participate in the revolution that brings artificial intelligence back to the heart of our society, thanks to data scientists. Data science consists in translating problems of any other nature into quantitative modeling problems, solved by processing algorithms. This book, designed for anyone wishing to learn Deep Learning. This book presents the main techniques: deep neural networks, able to model all kinds of data, convolution networks, able to classify images, segment them and discover the objects or people who are there, recurring networks, it contains sample code so that the reader can easily test and run the programs. On the program: Deep learning Neural Networks and Deep Learning Deep Learning Parameters and Hyper-parameters Deep Neural Networks Layers Deep Learning Activation Functions Convolutional Neural Network Python Data Structures Best practices in Python and Zen of Python Installing Python Python These are some of the topics covered in this book: fundamentals of deep learning fundamentals of probability fundamentals of statistics fundamentals of linear algebra introduction to machine learning and deep learning fundamentals of machine learning fundamentals of neural networks and deep learning deep learning parameters and hyper-parameters deep neural networks layers deep learning activation functions convolutional neural network Deep learning in practice (in jupyter notebooks) python data structures best practices in python and zen of python installing python The following are the objectives of this book: To help you understand deep learning in detail To help you know how to get started with deep learning in Python by setting up the coding environment. To help you transition from a deep learning Beginner to a Professional. To help you learn how to develop a complete and functional artificial neural network model in Python on your own. And more Get this book now to learn more about -- Deep learning in Python by setting up the coding environment.!