Deep Learning Full Course Andrew Free


Download Deep Learning Full Course Andrew Free PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Deep Learning Full Course Andrew Free book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Deep Learning for Coders with fastai and PyTorch


Deep Learning for Coders with fastai and PyTorch

Author: Jeremy Howard

language: en

Publisher: O'Reilly Media

Release Date: 2020-06-29


DOWNLOAD





Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala

Modern Robotics


Modern Robotics

Author: Kevin M. Lynch

language: en

Publisher: Cambridge University Press

Release Date: 2017-05-25


DOWNLOAD





A modern and unified treatment of the mechanics, planning, and control of robots, suitable for a first course in robotics.

Fundamentals of Deep Learning


Fundamentals of Deep Learning

Author: Nikhil Buduma

language: en

Publisher: "O'Reilly Media, Inc."

Release Date: 2017-05-25


DOWNLOAD





With the reinvigoration of neural networks in the 2000s, deep learning has become an extremely active area of research, one that’s paving the way for modern machine learning. In this practical book, author Nikhil Buduma provides examples and clear explanations to guide you through major concepts of this complicated field. Companies such as Google, Microsoft, and Facebook are actively growing in-house deep-learning teams. For the rest of us, however, deep learning is still a pretty complex and difficult subject to grasp. If you’re familiar with Python, and have a background in calculus, along with a basic understanding of machine learning, this book will get you started. Examine the foundations of machine learning and neural networks Learn how to train feed-forward neural networks Use TensorFlow to implement your first neural network Manage problems that arise as you begin to make networks deeper Build neural networks that analyze complex images Perform effective dimensionality reduction using autoencoders Dive deep into sequence analysis to examine language Learn the fundamentals of reinforcement learning