Deep Learning For Business With R


Download Deep Learning For Business With R PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Deep Learning For Business With R book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Deep Learning for Business with R


Deep Learning for Business with R

Author: N. Lewis

language: en

Publisher:

Release Date: 2016-08-31


DOWNLOAD





Master Deep Learning & Leverage Business Analytics - the Easy Way! Deep Learning for Business With R takes you on a gentle, fun and unhurried journey to building your own deep neural network models for business use in R. Using plain language, it offers an intuitive, practical, non-mathematical, easy to follow guide to the most successful ideas, outstanding techniques and usable solutions available using R. BUSINESS ANALYTICS FAST! This book is an ideal introduction to deep learning for business analytics. It is designed to be accessible. It will teach you, in simple and easy-to-understand terms, how to take advantage of deep learning to enhance business outcomes. NO EXPERIENCE REQUIRED I'm assuming you never did like linear algebra, don't want to see things derived, dislike complicated computer code, and you're here because you want to see how to use deep neural networks for business problems explained in plain language, and try them out for yourself. THIS BOOK IS FOR YOU IF YOU WANT: Explanations rather than mathematical derivation Real world applications that make sense. Illustrations to deepen your understanding. Worked examples in R you can easily follow and immediately implement. Ideas you can actually use and try on your own data. QUICK AND EASY: Deep Learning is little more than using straight-forward steps to process data into actionable insight. And in Deep Learning for Business with R, author Dr. N.D Lewis will show you how that's done. It's easier than you think. Through a simple to follow process you will learn how to build deep neural network models for business problems in R. Once you have mastered the process, it will be easy for you to translate your knowledge into your own powerful business applications. TAKE THE SHORTCUT: R is easy to use, available on all major operating systems and free! Each chapter covers, step by step, a different aspect of deep neural networks. You get your hands dirty as you work through some challenging real world business issues. YOU'LL LEARN HOW TO: Unleash the power of Deep Neural Networks for classifying the popularity of online news stories.. Develop hands on solutions for assessing customer churn.. Design successful applications for modeling customer brand choice. Master techniques for efficient product demand forecasting. Deploy deep neural networks to predict credit card expenditure. Adopt winning solutions to forecast the value of automobiles. ACCELERATE YOUR PROGRESS If you want to accelerate your progress and act on what you have learned, this book is the place to get started. It reveals how deep neural networks work, and takes you under the hood with an easy to follow process showing you how to build them faster than you imagined possible using the powerful and free R programming language. Everything you need to get started is contained within this book. Deep Learning for Business With R is your very own hands on practical, tactical, easy to follow guide to mastery Buy this book today your next big breakthrough using deep neural networks is only a page away!

Deep Learning with R for Beginners


Deep Learning with R for Beginners

Author: Mark Hodnett

language: en

Publisher: Packt Publishing Ltd

Release Date: 2019-05-20


DOWNLOAD





Explore the world of neural networks by building powerful deep learning models using the R ecosystem Key FeaturesGet to grips with the fundamentals of deep learning and neural networksUse R 3.5 and its libraries and APIs to build deep learning models for computer vision and text processingImplement effective deep learning systems in R with the help of end-to-end projectsBook Description Deep learning finds practical applications in several domains, while R is the preferred language for designing and deploying deep learning models. This Learning Path introduces you to the basics of deep learning and even teaches you to build a neural network model from scratch. As you make your way through the chapters, you’ll explore deep learning libraries and understand how to create deep learning models for a variety of challenges, right from anomaly detection to recommendation systems. The book will then help you cover advanced topics, such as generative adversarial networks (GANs), transfer learning, and large-scale deep learning in the cloud, in addition to model optimization, overfitting, and data augmentation. Through real-world projects, you’ll also get up to speed with training convolutional neural networks (CNNs), recurrent neural networks (RNNs), and long short-term memory networks (LSTMs) in R. By the end of this Learning Path, you’ll be well versed with deep learning and have the skills you need to implement a number of deep learning concepts in your research work or projects. This Learning Path includes content from the following Packt products: R Deep Learning Essentials - Second Edition by Joshua F. Wiley and Mark HodnettR Deep Learning Projects by Yuxi (Hayden) Liu and Pablo MaldonadoWhat you will learnImplement credit card fraud detection with autoencodersTrain neural networks to perform handwritten digit recognition using MXNetReconstruct images using variational autoencodersExplore the applications of autoencoder neural networks in clustering and dimensionality reductionCreate natural language processing (NLP) models using Keras and TensorFlow in RPrevent models from overfitting the data to improve generalizabilityBuild shallow neural network prediction modelsWho this book is for This Learning Path is for aspiring data scientists, data analysts, machine learning developers, and deep learning enthusiasts who are well versed in machine learning concepts and are looking to explore the deep learning paradigm using R. A fundamental understanding of R programming and familiarity with the basic concepts of deep learning are necessary to get the most out of this Learning Path.

Combining Machine Learning and Business


Combining Machine Learning and Business

Author: Yusep Maulana

language: en

Publisher: OYUSEP

Release Date: 2024-04-09


DOWNLOAD





In today's rapidly advancing digital era, the application of machine learning in various business aspects has become a crucial key in driving innovation and success. "Combining Machine Learning and Business" is designed to provide deep insights into how the integration of machine learning and business strategy can bring about significant transformation. This book not only elaborates on concepts and theories but further takes the reader on an applied research journey that has been undertaken. The author of this book, Yusep Maulana, has spent months conducting in-depth research on the application of machine learning technology in business, with a particular focus on case studies in Switzerland and the Netherlands. Through hands-on experience and direct collaboration with business practitioners in both countries, Yusep has managed to gather valuable data and insights on how machine learning can be integrated into business processes to enhance efficiency, innovation, and competitive advantage. This book presents the results of that research in an accessible way to readers, whether they are academics, business practitioners, students, or anyone with an interest in the field of machine learning and its application in the business world. It is hoped that readers will gain a broader and more applied understanding of the potential and challenges in combining machine learning with business strategy.