Deep Learning For Autonomous Vehicle Control

Download Deep Learning For Autonomous Vehicle Control PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Deep Learning For Autonomous Vehicle Control book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Deep Learning for Autonomous Vehicle Control

The next generation of autonomous vehicles will provide major improvements in traffic flow, fuel efficiency, and vehicle safety. Several challenges currently prevent the deployment of autonomous vehicles, one aspect of which is robust and adaptable vehicle control. Designing a controller for autonomous vehicles capable of providing adequate performance in all driving scenarios is challenging due to the highly complex environment and inability to test the system in the wide variety of scenarios which it may encounter after deployment. However, deep learning methods have shown great promise in not only providing excellent performance for complex and non-linear control problems, but also in generalizing previously learned rules to new scenarios. For these reasons, the use of deep neural networks for vehicle control has gained significant interest. In this book, we introduce relevant deep learning techniques, discuss recent algorithms applied to autonomous vehicle control, identify strengths and limitations of available methods, discuss research challenges in the field, and provide insights into the future trends in this rapidly evolving field.
Deep Learning for Autonomous Vehicle Control

The next generation of autonomous vehicles will provide major improvements in traffic flow, fuel efficiency, and vehicle safety. Several challenges currently prevent the deployment of autonomous vehicles, one aspect of which is robust and adaptable vehicle control. Designing a controller for autonomous vehicles capable of providing adequate performance in all driving scenarios is challenging due to the highly complex environment and inability to test the system in the wide variety of scenarios which it may encounter after deployment. However, deep learning methods have shown great promise in not only providing excellent performance for complex and non-linear control problems, but also in generalizing previously learned rules to new scenarios. For these reasons, the use of deep neural networks for vehicle control has gained significant interest. In this book, we introduce relevant deep learning techniques, discuss recent algorithms applied to autonomous vehicle control, identify strengths and limitations of available methods, discuss research challenges in the field, and provide insights into the future trends in this rapidly evolving field.
AI-enabled Technologies for Autonomous and Connected Vehicles

This book reports on cutting-edge research and advances in the field of intelligent vehicle systems. It presents a broad range of AI-enabled technologies, with a focus on automated, autonomous and connected vehicle systems. It covers advanced machine learning technologies, including deep and reinforcement learning algorithms, transfer learning and learning from big data, as well as control theory applied to mobility and vehicle systems. Furthermore, it reports on cutting-edge technologies for environmental perception and vehicle-to-everything (V2X), discussing socioeconomic and environmental implications, and aspects related to human factors and energy-efficiency alike, of automated mobility. Gathering chapters written by renowned researchers and professionals, this book offers a good balance of theoretical and practical knowledge. It provides researchers, practitioners and policy makers with a comprehensive and timely guide on the field of autonomous driving technologies.