Deep Learning Applications Of Short Range Radars


Download Deep Learning Applications Of Short Range Radars PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Deep Learning Applications Of Short Range Radars book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Deep Learning Applications of Short-Range Radars


Deep Learning Applications of Short-Range Radars

Author: Avik Santra

language: en

Publisher: Artech House

Release Date: 2020-09-30


DOWNLOAD





This exciting new resource covers various emerging applications of short range radars, including people counting and tracking, gesture sensing, human activity recognition, air-drawing, material classification, object classification, vital sensing by extracting features such as range-Doppler Images (RDI), range-cross range images, Doppler Spectrogram or directly feeding raw ADC data to the classifiers. The book also presents how deep learning architectures are replacing conventional radar signal processing pipelines enabling new applications and results. It describes how deep convolutional neural networks (DCNN), long-short term memory (LSTM), feedforward networks, regularization, optimization algorithms, connectionist This exciting new resource presents emerging applications of artificial intelligence and deep learning in short-range radar. The book covers applications ranging from industrial, consumer space to emerging automotive applications. The book presents several human-machine interface (HMI) applications, such as gesture recognition and sensing, human activity classification, air-writing, material classification, vital sensing, people sensing, people counting, people localization and in-cabin automotive occupancy and smart trunk opening. The underpinnings of deep learning are explored, outlining the history of neural networks and the optimization algorithms to train them. Modern deep convolutional neural network (DCNN), popular DCNN architectures for computer vision and their features are also introduced. The book presents other deep learning architectures, such as long-short term memory (LSTM), auto-encoders, variational auto-encoders (VAE), and generative adversarial networks (GAN). The application of human activity recognition as well as the application of air-writing using a network of short-range radars are outlined. This book demonstrates and highlights how deep learning is enabling several advanced industrial, consumer and in-cabin applications of short-range radars, which weren't otherwise possible. It illustrates various advanced applications, their respective challenges, and how they are been addressed using different deep learning architectures and algorithms.

Optimization of Spiking Neural Networks for Radar Applications


Optimization of Spiking Neural Networks for Radar Applications

Author: Muhammad Arsalan

language: en

Publisher: Springer Nature

Release Date: 2024-09-01


DOWNLOAD





This book offers a comprehensive exploration of the transformative role that edge devices play in advancing Internet of Things (IoT) applications. By providing real-time processing, reduced latency, increased efficiency, improved security, and scalability, edge devices are at the forefront of enabling IoT growth and success. As the adoption of AI on the edge continues to surge, the demand for real-time data processing is escalating, driving innovation in AI and fostering the development of cutting-edge applications and use cases. Delving into the intricacies of traditional deep neural network (deepNet) approaches, the book addresses concerns about their energy efficiency during inference, particularly for edge devices. The energy consumption of deepNets, largely attributed to Multiply-accumulate (MAC) operations between layers, is scrutinized. Researchers are actively working on reducing energy consumption through strategies such as tiny networks, pruning approaches, and weight quantization. Additionally, the book sheds light on the challenges posed by the physical size of AI accelerators for edge devices. The central focus of the book is an in-depth examination of SNNs' capabilities in radar data processing, featuring the development of optimized algorithms.

Methods and Techniques in Deep Learning


Methods and Techniques in Deep Learning

Author: Avik Santra

language: en

Publisher: John Wiley & Sons

Release Date: 2022-11-21


DOWNLOAD





Methods and Techniques in Deep Learning Introduces multiple state-of-the-art deep learning architectures for mmWave radar in a variety of advanced applications Methods and Techniques in Deep Learning: Advancements in mmWave Radar Solutions provides a timely and authoritative overview of the use of artificial intelligence (AI)-based processing for various mmWave radar applications. Focusing on practical deep learning techniques, this comprehensive volume explains the fundamentals of deep learning, reviews cutting-edge deep metric learning techniques, describes different typologies of reinforcement learning (RL) algorithms, highlights how domain adaptation (DA) can be used for improving the performance of machine learning (ML) algorithms, and more. Throughout the book, readers are exposed to product-ready deep learning solutions while learning skills that are relevant for building any industrial-grade, sensor-based deep learning solution. A team of authors with more than 70 filed patents and 100 published papers on AI and sensor processing illustrates how deep learning is enabling a range of advanced industrial, consumer, and automotive applications of mmWave radars. In-depth chapters cover topics including multi-modal deep learning approaches, the elemental blocks required to formulate Bayesian deep learning, how domain adaptation (DA) can be used for improving the performance of machine learning algorithms, and geometric deep learning are used for processing point clouds. In addition, the book: Discusses various advanced applications and how their respective challenges have been addressed using different deep learning architectures and algorithms Describes deep learning in the context of computer vision, natural language processing, sensor processing, and mmWave radar sensors Demonstrates how deep parametric learning reduces the number of trainable parameters and improves the data flow Presents several human-machine interface (HMI) applications such as gesture recognition, human activity classification, human localization and tracking, in-cabin automotive occupancy sensing Methods and Techniques in Deep Learning: Advancements in mmWave Radar Solutions is an invaluable resource for industry professionals, researchers, and graduate students working in systems engineering, signal processing, sensors, data science, and AI.


Recent Search