Deep Learning Applications In Computer Vision Signals And Networks

Download Deep Learning Applications In Computer Vision Signals And Networks PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Deep Learning Applications In Computer Vision Signals And Networks book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Deep Learning Applications: In Computer Vision, Signals And Networks

This book proposes various deep learning models featuring how deep learning algorithms have been applied and used in real-life settings. The complexity of real-world scenarios and constraints imposed by the environment, together with budgetary and resource limitations, have posed great challenges to engineers and developers alike, to come up with solutions to meet these demands. This book presents case studies undertaken by its contributors to overcome these problems. These studies can be used as references for designers when applying deep learning in solving real-world problems in the areas of vision, signals, and networks.The contents of this book are divided into three parts. In the first part, AI vision applications in plant disease diagnostics, PM2.5 concentration estimation, surface defect detection, and ship plate identification, are featured. The second part introduces deep learning applications in signal processing; such as time series classification, broad-learning based signal modulation recognition, and graph neural network (GNN) based modulation recognition. Finally, the last section of the book reports on graph embedding applications and GNN in AI for networks; such as an end-to-end graph embedding method for dispute detection, an autonomous System-GNN architecture to infer the relationship between Apache software, a Ponzi scheme detection framework to identify and detect Ponzi schemes, and a GNN application to predict molecular biological activities.
Deep Learning in Visual Computing and Signal Processing

An enlightening amalgamation of deep learning concepts with visual computing and signal processing applications, this new volume covers the fundamentals and advanced topics in designing and deploying techniques using deep architectures and their application in visual computing and signal processing. The volume first lays out the fundamentals of deep learning as well as deep learning architectures and frameworks. It goes on to discuss deep learning in neural networks and deep learning for object recognition and detection models. It looks at the various specific applications of deep learning in visual and signal processing, such as in biorobotics, for automated brain tumor segmentation in MRI images, in neural networks for use in seizure classification, for digital forensic investigation based on deep learning, and more.
Deep Learning Applications

This book presents a compilation of selected papers from the 17th IEEE International Conference on Machine Learning and Applications (IEEE ICMLA 2018), focusing on use of deep learning technology in application like game playing, medical applications, video analytics, regression/classification, object detection/recognition and robotic control in industrial environments. It highlights novel ways of using deep neural networks to solve real-world problems, and also offers insights into deep learning architectures and algorithms, making it an essential reference guide for academic researchers, professionals, software engineers in industry, and innovative product developers.