Deep Learning And Dynamic Neural Networks With Matlab

Download Deep Learning And Dynamic Neural Networks With Matlab PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Deep Learning And Dynamic Neural Networks With Matlab book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Deep Learning and Dynamic Neural Networks With Matlab

Author: Perez C.
language: en
Publisher: Createspace Independent Publishing Platform
Release Date: 2017-07-31
Deep learning is a branch of machine learning that teaches computers to do what comes naturally to humans: learn from experience. Machine learning algorithms use computational methods to "learn" information directly from data without relying on a predetermined equation as a model. Deep learning is especially suited for image recognition, which is important for solving problems such as facial recognition, motion detection, and many advanced driver assistance technologies such as autonomous driving, lane detection, pedestrian detection, and autonomous parking. Neural Network Toolbox provides simple MATLAB commands for creating and interconnecting the layers of a deep neural network. Examples and pretrained networks make it easy to use MATLAB for deep learning, even without knowledge of advanced computer vision algorithms or neural networks. The Neural Network Toolbox software uses the network object to store all of the information that defines a neural network. After a neural network has been created, it needs to be configured and then trained. Configuration involves arranging the network so that it is compatible with the problem you want to solve, as defined by sample data. After the network has been configured, the adjustable network parameters (called weights and biases) need to be tuned, so that the network performance is optimized. This tuning process is referred to as training the network. Configuration and training require that the network be provided with example data. This topic shows how to format the data for presentation to the network. It also explains network configuration and the two forms of network training: incremental training and batch training. Neural networks can be classified into dynamic and static categories. Static (feedforward) networks have no feedback elements and contain no delays; the output is calculated directly from the input through feedforward connections. In dynamic networks, the output depends not only on the current input to the network, but also on the current or previous inputs, outputs, or states of the network. This book develops the following topics: - "Workflow for Neural Network Design" - "Neural Network Architectures" - "Deep Learning in MATLAB" - "Deep Network Using Autoencoders" - "Convolutional Neural Networks" - "Multilayer Neural Networks" - "Dynamic Neural Networks" - "Time Series Neural Networks" - "Multistep Neural Network Prediction"
Deep Learning with MATLAB: Neural Networks Design and Dynamic Neural Networks

Author: A. Vidales
language: en
Publisher: Independently Published
Release Date: 2018-12-29
Deep Learning Toolbox provides simple MATLAB commands for creating and interconnecting the layers of a deep neural network. Examples and pretrained networks make it easy to use MATLAB for deep learning, even without knowledge of advanced computer vision algorithms or neural networks.Neural networks can be classified into dynamic and static categories. Static (feedforward) networks have no feedback elements and contain no delays; the output is calculated directly from the input through feedforward connections. In dynamic networks, the output depends not only on the current input to the network, but also on the current or previous inputs, outputs, or states of the network.Dynamic networks can be divided into two categories: those that have only feedforward connections, and those that have feedback, or recurrent, connections. To understand the difference between static, feedforward-dynamic, and recurrent-dynamic networks, create some networks and see how they respond to an input sequence.All the specifi dynamic networks discussed so far have either been focused networks,with the dynamics only at the input layer, or feedforward networks. The nonlinear autoregressive network with exogenous inputs (NARX) is a recurrent dynamic network,with feedback connections enclosing several layers of the network. The NARX model isbased on the linear ARX model, which is commonly used in time-series modeling.
Neural Networks and Deep Learning

This book covers both classical and modern models in deep learning. The primary focus is on the theory and algorithms of deep learning. The theory and algorithms of neural networks are particularly important for understanding important concepts, so that one can understand the important design concepts of neural architectures in different applications. Why do neural networks work? When do they work better than off-the-shelf machine-learning models? When is depth useful? Why is training neural networks so hard? What are the pitfalls? The book is also rich in discussing different applications in order to give the practitioner a flavor of how neural architectures are designed for different types of problems. Applications associated with many different areas like recommender systems, machine translation, image captioning, image classification, reinforcement-learning based gaming, and text analytics are covered. The chapters of this book span three categories: The basics of neural networks: Many traditional machine learning models can be understood as special cases of neural networks. An emphasis is placed in the first two chapters on understanding the relationship between traditional machine learning and neural networks. Support vector machines, linear/logistic regression, singular value decomposition, matrix factorization, and recommender systems are shown to be special cases of neural networks. These methods are studied together with recent feature engineering methods like word2vec. Fundamentals of neural networks: A detailed discussion of training and regularization is provided in Chapters 3 and 4. Chapters 5 and 6 present radial-basis function (RBF) networks and restricted Boltzmann machines. Advanced topics in neural networks: Chapters 7 and 8 discuss recurrent neural networks and convolutional neural networks. Several advanced topics like deep reinforcement learning, neural Turing machines, Kohonen self-organizing maps, and generative adversarial networks are introduced in Chapters 9 and 10. The book is written for graduate students, researchers, and practitioners. Numerous exercises are available along with a solution manual to aid in classroom teaching. Where possible, an application-centric view is highlighted in order to provide an understanding of the practical uses of each class of techniques.