Deep Learning Ai

Download Deep Learning Ai PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Deep Learning Ai book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
The Deep Learning AI Playbook

Just like any new technology, what perplexes many is the question of how to apply Deep Learning in a business context. Technology that is disruptive does not automatically imply that the development of valuable use cases are apparent. For years, many people could not figure out how to monetize the World Wide Web. We are in that same situation with Deep Learning AI. The developments are mind-boggling but the monetization is far from being obvious.Deep Learning Artificial Intelligence involves the interplay of Computer Science, Physics, Biology, Linguistics and Psychology. In addition to that, it is technology that can be extremely disruptive. Furthermore, the ramifications to society and even our own humanity can be immense. There are few subjects that are as captivating and as consequential as this. Surprisingly, there is very little that is written about this new technology in a more comprehensive and cohesive way. This book is an opinionated take on the developments of Deep Learning AI.
Explainable Deep Learning AI

Explainable Deep Learning AI: Methods and Challenges presents the latest works of leading researchers in the XAI area, offering an overview of the XAI area, along with several novel technical methods and applications that address explainability challenges for deep learning AI systems. The book overviews XAI and then covers a number of specific technical works and approaches for deep learning, ranging from general XAI methods to specific XAI applications, and finally, with user-oriented evaluation approaches. It also explores the main categories of explainable AI – deep learning, which become the necessary condition in various applications of artificial intelligence. The groups of methods such as back-propagation and perturbation-based methods are explained, and the application to various kinds of data classification are presented. - Provides an overview of main approaches to Explainable Artificial Intelligence (XAI) in the Deep Learning realm, including the most popular techniques and their use, concluding with challenges and exciting future directions of XAI - Explores the latest developments in general XAI methods for Deep Learning - Explains how XAI for Deep Learning is applied to various domains like images, medicine and natural language processing - Provides an overview of how XAI systems are tested and evaluated, specially with real users, a critical need in XAI
Deep Learning with PyTorch Lightning

Author: Kunal Sawarkar
language: en
Publisher: Packt Publishing Ltd
Release Date: 2022-04-29
Build, train, deploy, and scale deep learning models quickly and accurately, improving your productivity using the lightweight PyTorch Wrapper Key FeaturesBecome well-versed with PyTorch Lightning architecture and learn how it can be implemented in various industry domainsSpeed up your research using PyTorch Lightning by creating new loss functions, networks, and architecturesTrain and build new algorithms for massive data using distributed trainingBook Description PyTorch Lightning lets researchers build their own Deep Learning (DL) models without having to worry about the boilerplate. With the help of this book, you'll be able to maximize productivity for DL projects while ensuring full flexibility from model formulation through to implementation. You'll take a hands-on approach to implementing PyTorch Lightning models to get up to speed in no time. You'll start by learning how to configure PyTorch Lightning on a cloud platform, understand the architectural components, and explore how they are configured to build various industry solutions. Next, you'll build a network and application from scratch and see how you can expand it based on your specific needs, beyond what the framework can provide. The book also demonstrates how to implement out-of-box capabilities to build and train Self-Supervised Learning, semi-supervised learning, and time series models using PyTorch Lightning. As you advance, you'll discover how generative adversarial networks (GANs) work. Finally, you'll work with deployment-ready applications, focusing on faster performance and scaling, model scoring on massive volumes of data, and model debugging. By the end of this PyTorch book, you'll have developed the knowledge and skills necessary to build and deploy your own scalable DL applications using PyTorch Lightning. What you will learnCustomize models that are built for different datasets, model architectures, and optimizersUnderstand how a variety of Deep Learning models from image recognition and time series to GANs, semi-supervised and self-supervised models can be builtUse out-of-the-box model architectures and pre-trained models using transfer learningRun and tune DL models in a multi-GPU environment using mixed-mode precisionsExplore techniques for model scoring on massive workloadsDiscover troubleshooting techniques while debugging DL modelsWho this book is for This deep learning book is for citizen data scientists and expert data scientists transitioning from other frameworks to PyTorch Lightning. This book will also be useful for deep learning researchers who are just getting started with coding for deep learning models using PyTorch Lightning. Working knowledge of Python programming and an intermediate-level understanding of statistics and deep learning fundamentals is expected.