Deep Analysis

Download Deep Analysis PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Deep Analysis book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Deep Learning-Based Approaches for Sentiment Analysis

This book covers deep-learning-based approaches for sentiment analysis, a relatively new, but fast-growing research area, which has significantly changed in the past few years. The book presents a collection of state-of-the-art approaches, focusing on the best-performing, cutting-edge solutions for the most common and difficult challenges faced in sentiment analysis research. Providing detailed explanations of the methodologies, the book is a valuable resource for researchers as well as newcomers to the field.
Deep Learning for Medical Image Analysis

Deep learning is providing exciting solutions for medical image analysis problems and is seen as a key method for future applications. This book gives a clear understanding of the principles and methods of neural network and deep learning concepts, showing how the algorithms that integrate deep learning as a core component have been applied to medical image detection, segmentation and registration, and computer-aided analysis, using a wide variety of application areas. Deep Learning for Medical Image Analysis is a great learning resource for academic and industry researchers in medical imaging analysis, and for graduate students taking courses on machine learning and deep learning for computer vision and medical image computing and analysis. Covers common research problems in medical image analysis and their challenges Describes deep learning methods and the theories behind approaches for medical image analysis Teaches how algorithms are applied to a broad range of application areas, including Chest X-ray, breast CAD, lung and chest, microscopy and pathology, etc. Includes a Foreword written by Nicholas Ayache
Handbook of Research on Deep Learning-Based Image Analysis Under Constrained and Unconstrained Environments

Recent advancements in imaging techniques and image analysis has broadened the horizons for their applications in various domains. Image analysis has become an influential technique in medical image analysis, optical character recognition, geology, remote sensing, and more. However, analysis of images under constrained and unconstrained environments require efficient representation of the data and complex models for accurate interpretation and classification of data. Deep learning methods, with their hierarchical/multilayered architecture, allow the systems to learn complex mathematical models to provide improved performance in the required task. The Handbook of Research on Deep Learning-Based Image Analysis Under Constrained and Unconstrained Environments provides a critical examination of the latest advancements, developments, methods, systems, futuristic approaches, and algorithms for image analysis and addresses its challenges. Highlighting concepts, methods, and tools including convolutional neural networks, edge enhancement, image segmentation, machine learning, and image processing, the book is an essential and comprehensive reference work for engineers, academicians, researchers, and students.