Decision Trees And Random Forests

Download Decision Trees And Random Forests PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Decision Trees And Random Forests book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Decision Tree and Random Forest: Machine Learning and Algorithms

Author: William Sullivan
language: en
Publisher: Createspace Independent Publishing Platform
Release Date: 2018-03-06
Decision Tree And Random Forest: Artificial Intelligence Series Decision Tree and Random Forest have real world applications using algorithms These are behind many fundamental activities, services and processes we humans take for granted! We interact with these "behind the scene" processes on a daily basis without even knowing! This book installment goes over the fundamental concepts of both Decision Trees and Random Forests, but explains it to readers in more simple terms and breaks down the complexity of the subject matter in more comprehensible components. What You'll Learn... Structure of Decision Tree What Constitutes Random Forests Algorithms Recursive Binary Splitting Regression Vs Classification Trees K-NN ( K-nearest neighbor) Deep learning Aspects of Bayes' Theorem And.. Much, Much More! Other books easily retail for $50-$100+ and have far less quality content. This book is by far superior and exceeds any other book available. High quality diagrams included, visual aids have been proven to help accelerate the learning process 110% times faster than texts alone. Make the greatest investment in yourself by investing in your knowledge! Buy Now *Note: For the best visual experience of diagrams it is highly recommend you purchase the paperback version*
Tree-based Machine Learning Algorithms

Author: Clinton Sheppard
language: en
Publisher: Createspace Independent Publishing Platform
Release Date: 2017-09-09
"Learn how to use decision trees and random forests for classification and regression, their respective limitations, and how the algorithms that build them work. Each chapter introduces a new data concern and then walks you through modifying the code, thus building the engine just-in-time. Along the way you will gain experience making decision trees and random forests work for you."--Back cover.
Random Forests with R

This book offers an application-oriented guide to random forests: a statistical learning method extensively used in many fields of application, thanks to its excellent predictive performance, but also to its flexibility, which places few restrictions on the nature of the data used. Indeed, random forests can be adapted to both supervised classification problems and regression problems. In addition, they allow us to consider qualitative and quantitative explanatory variables together, without pre-processing. Moreover, they can be used to process standard data for which the number of observations is higher than the number of variables, while also performing very well in the high dimensional case, where the number of variables is quite large in comparison to the number of observations. Consequently, they are now among the preferred methods in the toolbox of statisticians and data scientists. The book is primarily intended for students in academic fields such as statistical education, but also for practitioners in statistics and machine learning. A scientific undergraduate degree is quite sufficient to take full advantage of the concepts, methods, and tools discussed. In terms of computer science skills, little background knowledge is required, though an introduction to the R language is recommended. Random forests are part of the family of tree-based methods; accordingly, after an introductory chapter, Chapter 2 presents CART trees. The next three chapters are devoted to random forests. They focus on their presentation (Chapter 3), on the variable importance tool (Chapter 4), and on the variable selection problem (Chapter 5), respectively. After discussing the concepts and methods, we illustrate their implementation on a running example. Then, various complements are provided before examining additional examples. Throughout the book, each result is given together with the code (in R) that can be used to reproduce it. Thus, the book offers readers essential information and concepts, together with examples and the software tools needed to analyse data using random forests.