Decision Making Under Uncertainty And Reinforcement Learning


Download Decision Making Under Uncertainty And Reinforcement Learning PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Decision Making Under Uncertainty And Reinforcement Learning book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Decision Making Under Uncertainty and Reinforcement Learning


Decision Making Under Uncertainty and Reinforcement Learning

Author: Christos Dimitrakakis

language: en

Publisher: Springer Nature

Release Date: 2022-12-02


DOWNLOAD





This book presents recent research in decision making under uncertainty, in particular reinforcement learning and learning with expert advice. The core elements of decision theory, Markov decision processes and reinforcement learning have not been previously collected in a concise volume. Our aim with this book was to provide a solid theoretical foundation with elementary proofs of the most important theorems in the field, all collected in one place, and not typically found in introductory textbooks. This book is addressed to graduate students that are interested in statistical decision making under uncertainty and the foundations of reinforcement learning.

Decision Making under Uncertainty


Decision Making under Uncertainty

Author: Kerstin Preuschoff

language: en

Publisher: Frontiers Media SA

Release Date: 2015-06-16


DOWNLOAD





Most decisions in life are based on incomplete information and have uncertain consequences. To successfully cope with real-life situations, the nervous system has to estimate, represent and eventually resolve uncertainty at various levels. A common tradeoff in such decisions involves those between the magnitude of the expected rewards and the uncertainty of obtaining the rewards. For instance, a decision maker may choose to forgo the high expected rewards of investing in the stock market and settle instead for the lower expected reward and much less uncertainty of a savings account. Little is known about how different forms of uncertainty, such as risk or ambiguity, are processed and learned about and how they are integrated with expected rewards and individual preferences throughout the decision making process. With this Research Topic we aim to provide a deeper and more detailed understanding of the processes behind decision making under uncertainty.

Grokking Deep Reinforcement Learning


Grokking Deep Reinforcement Learning

Author: Miguel Morales

language: en

Publisher: Manning

Release Date: 2020-11-10


DOWNLOAD





Grokking Deep Reinforcement Learning uses engaging exercises to teach you how to build deep learning systems. This book combines annotated Python code with intuitive explanations to explore DRL techniques. You’ll see how algorithms function and learn to develop your own DRL agents using evaluative feedback. Summary We all learn through trial and error. We avoid the things that cause us to experience pain and failure. We embrace and build on the things that give us reward and success. This common pattern is the foundation of deep reinforcement learning: building machine learning systems that explore and learn based on the responses of the environment. Grokking Deep Reinforcement Learning introduces this powerful machine learning approach, using examples, illustrations, exercises, and crystal-clear teaching. You'll love the perfectly paced teaching and the clever, engaging writing style as you dig into this awesome exploration of reinforcement learning fundamentals, effective deep learning techniques, and practical applications in this emerging field. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology We learn by interacting with our environment, and the rewards or punishments we experience guide our future behavior. Deep reinforcement learning brings that same natural process to artificial intelligence, analyzing results to uncover the most efficient ways forward. DRL agents can improve marketing campaigns, predict stock performance, and beat grand masters in Go and chess. About the book Grokking Deep Reinforcement Learning uses engaging exercises to teach you how to build deep learning systems. This book combines annotated Python code with intuitive explanations to explore DRL techniques. You’ll see how algorithms function and learn to develop your own DRL agents using evaluative feedback. What's inside An introduction to reinforcement learning DRL agents with human-like behaviors Applying DRL to complex situations About the reader For developers with basic deep learning experience. About the author Miguel Morales works on reinforcement learning at Lockheed Martin and is an instructor for the Georgia Institute of Technology’s Reinforcement Learning and Decision Making course. Table of Contents 1 Introduction to deep reinforcement learning 2 Mathematical foundations of reinforcement learning 3 Balancing immediate and long-term goals 4 Balancing the gathering and use of information 5 Evaluating agents’ behaviors 6 Improving agents’ behaviors 7 Achieving goals more effectively and efficiently 8 Introduction to value-based deep reinforcement learning 9 More stable value-based methods 10 Sample-efficient value-based methods 11 Policy-gradient and actor-critic methods 12 Advanced actor-critic methods 13 Toward artificial general intelligence