Decision Making Based On Valued Fuzzy Superhypergraphs

Download Decision Making Based On Valued Fuzzy Superhypergraphs PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Decision Making Based On Valued Fuzzy Superhypergraphs book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Decision Making Based on Valued Fuzzy Superhypergraphs

This paper explores the defects in fuzzy (hyper) graphs (as complex (hyper) networks) and extends the fuzzy (hyper) graphs to fuzzy (quasi) superhypergraphs as a new concept.We have modeled the fuzzy superhypergraphs as complex superhypernetworks in order to make a relation between labeled objects in the form of details and generalities. Indeed, the structure of fuzzy (quasi) superhypergraphs collects groups of labeled objects and analyzes them in the form of the part to part of objects, the part of objects to the whole group of objects, and the whole to the whole group of objects at the same time. We have investigated the properties of fuzzy (quasi) superhypergraphs based on any positive real number as valued fuzzy (quasi) superhypergraphs, considering the complement of valued fuzzy (quasi) superhypergraphs, the notation of isomorphism of valued fuzzy (quasi) superhypergraphs based on the permutations, and we have presented the isomorphic conditions of (self complemented) valued fuzzy (quasi) superhypergraphs. The concept of impact membership value of fuzzy (quasi) superhypergraphs is introduced in this study and it is applied in designing the real problem in the real world. Finally, the problem of business superhypernetworks is presented as an application of fuzzy valued quasi superhypergraphs in the real world.
A Concise Study of Some Superhypergraph Classes

In graph theory, the hypergraph [22] extends the traditional graph structure by allowing edges to connect multiple vertices, and this concept is further broadened by the superhypergraph [174,176]. Additionally, several types of uncertain graphs have been explored, including fuzzy graphs [136, 153], neutrosophic graphs [35, 36], and plithogenic graphs [66, 75, 185]. This study explores the SuperHyperGraph, Single-Valued Neutrosophic Quasi SuperHyperGraph, and Plithogenic Quasi SuperHyperGraph, analyzing their relationships with other graph classes. Future work will define the Semi Superhypergraph, Multi Superhypergraph, Pseudo Superhypergraph, Mixed Superhypergraph, and Bidirected Superhypergraph and examine their connections to existing classes in hypergraphs and graphs.
Superhypergraph Neural Networks and Plithogenic Graph Neural Networks: Theoretical Foundations

Hypergraphs extend traditional graphs by allowing edges to connect multiple nodes, while superhypergraphs further generalize this concept to represent even more complex relationships. Neural networks, inspired by biological systems, are widely used for tasks such as pattern recognition, data classification, and prediction. Graph Neural Networks (GNNs), a well-established framework, have recently been extended to Hypergraph Neural Networks (HGNNs), with their properties and applications being actively studied. The Plithogenic Graph framework enhances graph representations by integrating multi-valued attributes, as well as membership and contradiction functions, enabling the detailed modeling of complex relationships. In the context of handling uncertainty, concepts such as Fuzzy Graphs and Neutrosophic Graphs have gained prominence. It is well established that Plithogenic Graphs serve as a generalization of both Fuzzy Graphs and Neutrosophic Graphs. Furthermore, the Fuzzy Graph Neural Network has been proposed and is an active area of research. This paper establishes the theoretical foundation for the development of SuperHyperGraph Neural Networks (SHGNNs) and Plithogenic Graph Neural Networks, expanding the applicability of neural networks to these advanced graph structures. While mathematical generalizations and proofs are presented, future computational experiments are anticipated.