Data Science Thinking

Download Data Science Thinking PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Data Science Thinking book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Data Science Thinking

This book explores answers to the fundamental questions driving the research, innovation and practices of the latest revolution in scientific, technological and economic development: how does data science transform existing science, technology, industry, economy, profession and education? How does one remain competitive in the data science field? What is responsible for shaping the mindset and skillset of data scientists? Data Science Thinking paints a comprehensive picture of data science as a new scientific paradigm from the scientific evolution perspective, as data science thinking from the scientific-thinking perspective, as a trans-disciplinary science from the disciplinary perspective, and as a new profession and economy from the business perspective.
Guide to Teaching Data Science

Data science is a new field that touches on almost every domain of our lives, and thus it is taught in a variety of environments. Accordingly, the book is suitable for teachers and lecturers in all educational frameworks: K-12, academia and industry. This book aims at closing a significant gap in the literature on the pedagogy of data science. While there are many articles and white papers dealing with the curriculum of data science (i.e., what to teach?), the pedagogical aspect of the field (i.e., how to teach?) is almost neglected. At the same time, the importance of the pedagogical aspects of data science increases as more and more programs are currently open to a variety of people. This book provides a variety of pedagogical discussions and specific teaching methods and frameworks, as well as includes exercises, and guidelines related to many data science concepts (e.g., data thinking and the data science workflow), main machine learning algorithms and concepts (e.g., KNN, SVM, Neural Networks, performance metrics, confusion matrix, and biases) and data science professional topics (e.g., ethics, skills and research approach). Professor Orit Hazzan is a faculty member at the Technion’s Department of Education in Science and Technology since October 2000. Her research focuses on computer science, software engineering and data science education. Within this framework, she studies the cognitive and social processes on the individual, the team and the organization levels, in all kinds of organizations. Dr. Koby Mike is a Ph.D. graduate from the Technion's Department of Education in Science and Technology under the supervision of Professor Orit Hazzan. He continued his post-doc research on data science education at the Bar-Ilan University, and obtained a B.Sc. and an M.Sc. in Electrical Engineering from Tel Aviv University.
Data Analytics for Business Intelligence

This book studies data, analytics, and intelligence using Boolean structure. Chapters dive into the theories, foundations, technologies, and methods of data, analytics, and intelligence. The primary aim of this book is to convey the theories and technologies of data, analytics, and intelligence with applications to readers based on systematic generalization and specialization. Sun uses the Boolean structure to deconstruct all books and papers related to data, analytics, and intelligence and to reorganize them to reshape the world of big data, data analytics, analytics intelligence, data science, and artificial intelligence. Multi-industry applications in business, management, and decision-making are provided. Cutting-edge theories, technologies, and applications of data, analytics, and intelligence and their integration are also explored. Overall, this book provides original insights on sharing computing, insight computing, platform computing, a calculus of intelligent analytics and intelligent business analytics, meta computing, data analyticizing, DDPP (descriptive, diagnostic, predictive, and prescriptive) computing, and analytics. This book is a useful resource with multi-industry applications for scientists, engineers, data analysts, educators, and university students.