Data Science On The Google Cloud Platform


Download Data Science On The Google Cloud Platform PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Data Science On The Google Cloud Platform book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Data Analytics with Google Cloud Platform


Data Analytics with Google Cloud Platform

Author: Murari Ramuka

language: en

Publisher: BPB Publications

Release Date: 2019-12-16


DOWNLOAD





Step-by-step guide to different data movement and processing techniques, using Google Cloud Platform Services Key Featuresa- Learn the basic concept of Cloud Computing along with different Cloud service provides with their supported Models (IaaS/PaaS/SaaS)a- Learn the basics of Compute Engine, App Engine, Container Engine, Project and Billing setup in the Google Cloud Platforma- Learn how and when to use Cloud DataFlow, Cloud DataProc and Cloud DataPrep a- Build real-time data pipeline to support real-time analytics using Pub/Sub messaging servicea- Setting up a fully managed GCP Big Data Cluster using Cloud DataProc for running Apache Spark and Apache Hadoop clusters in a simpler, more cost-efficient mannera- Learn how to use Cloud Data Studio for visualizing the data on top of Big Querya- Implement and understand real-world business scenarios for Machine Learning, Data Pipeline EngineeringDescriptionModern businesses are awash with data, making data driven decision-making tasks increasingly complex. As a result, relevant technical expertise and analytical skills are required to do such tasks. This book aims to equip you with enough knowledge of Cloud Computing in conjunction with Google Cloud Data platform to succeed in the role of a Cloud data expert.Current market is trending towards the latest cloud technologies, which is the need of the hour. Google being the pioneer, is dominating this space with the right set of cloud services being offered as part of GCP (Google Cloud Platform). At this juncture, this book will be very vital and will be cover all the services that are being offered by GCP, putting emphasis on Data services.What will you learnBy the end of the book, you will have come across different data services and platforms offered by Google Cloud, and how those services/features can be enabled to serve business needs. You will also see a few case studies to put your knowledge to practice and solve business problems such as building a real-time streaming pipeline engine, Scalable Datawarehouse on Cloud, fully managed Hadoop cluster on Cloud and enabling TensorFlow/Machine Learning API's to support real-life business problems. Remember to practice additional examples to master these techniques. Who this book is forThis book is for professionals as well as graduates who want to build a career in Google Cloud data analytics technologies. One stop shop for those who wish to get an initial to advance understanding of the GCP data platform. The target audience will be data engineers/professionals who are new, as well as those who are acquainted with the tools and techniques related to cloud and data space. a- Individuals who have basic data understanding (i.e. Data and cloud) and have done some work in the field of data analytics, can refer/use this book to master their knowledge/understanding.a- The highlight of this book is that it will start with the basic cloud computing fundamentals and will move on to cover the advance concepts on GCP cloud data analytics and hence can be referred across multiple different levels of audiences. Table of Contents1. GCP Overview and Architecture2. Data Storage in GCP 3. Data Processing in GCP with Pub/Sub and Dataflow 4. Data Processing in GCP with DataPrep and Dataflow5. Big Query and Data Studio6. Machine Learning with GCP7. Sample Use cases and ExamplesAbout the Author Murari Ramuka is a seasoned Data Analytics professional with 12+ years of experience in enabling data analytics platforms using traditional DW/BI and Cloud Technologies (Azure, Google Cloud Platform) to uncover hidden insights and maximize revenue, profitability and ensure efficient operations management. He has worked with several multinational IT giants like Capgemini, Cognizant, Syntel and Icertis.His LinkedIn Profile: https://www.linkedin.com/in/murari-ramuka-98a440a/

DATA SCIENCE ON THE GOOGLE CLOUD PLATFORM


DATA SCIENCE ON THE GOOGLE CLOUD PLATFORM

Author: VALLIAPPA. LAKSHMANAN

language: en

Publisher:

Release Date: 2022


DOWNLOAD





Data Science on the Google Cloud Platform


Data Science on the Google Cloud Platform

Author: Valliappa Lakshmanan

language: en

Publisher: "O'Reilly Media, Inc."

Release Date: 2017-12-12


DOWNLOAD





Learn how easy it is to apply sophisticated statistical and machine learning methods to real-world problems when you build on top of the Google Cloud Platform (GCP). This hands-on guide shows developers entering the data science field how to implement an end-to-end data pipeline, using statistical and machine learning methods and tools on GCP. Through the course of the book, you’ll work through a sample business decision by employing a variety of data science approaches. Follow along by implementing these statistical and machine learning solutions in your own project on GCP, and discover how this platform provides a transformative and more collaborative way of doing data science. You’ll learn how to: Automate and schedule data ingest, using an App Engine application Create and populate a dashboard in Google Data Studio Build a real-time analysis pipeline to carry out streaming analytics Conduct interactive data exploration with Google BigQuery Create a Bayesian model on a Cloud Dataproc cluster Build a logistic regression machine-learning model with Spark Compute time-aggregate features with a Cloud Dataflow pipeline Create a high-performing prediction model with TensorFlow Use your deployed model as a microservice you can access from both batch and real-time pipelines