Data Science Manuale Italiano Advanced Machine Learning E Deployment


Download Data Science Manuale Italiano Advanced Machine Learning E Deployment PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Data Science Manuale Italiano Advanced Machine Learning E Deployment book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Data Science Manuale Italiano – Advanced Machine Learning e Deployment


Data Science Manuale Italiano – Advanced Machine Learning e Deployment

Author: Mario A. B. Capurso

language: en

Publisher: Mario Capurso

Release Date:


DOWNLOAD





Questa opera segue il curriculum 2021 della Association for Computing Machinery per specialisti in Scienze dei Dati, con l’obiettivo di costituire un “Bignami” della Scienza ed Ingegneria dei Dati e facilitare il percorso di formazione personale a partire da competenze specialistiche in Informatica o Matematica o Statistica per un lettore di lingua madre italiana. Parte di una serie di testi, riepiloga prima di tutto la metodologia di lavoro standard CRISP DM utilizzata in questa opera e in progetti di Scienza dei Dati. Poichè questo testo utilizza Orange per gli aspetti applicativi, ne descrive l’installazione ed i widget. La fase di modellizzazione dei dati viene considerata nell’ottica dell’apprendimento automatico riepilogando i tipi di apprendimento automatico, i tipi di modelli, i tipi di problemi e i tipi di algoritmi. Sono descritti gli aspetti avanzati associati alla modellizzazione quali le funzioni di perdita e di ottimizzazione come la gradient descent, le tecniche per analizzare le prestazioni dei modelli come il Bootstrapping e la Cross Validation. Vengono analizzati gli scenari di deployment e le più comuni piattaforme, con esempi applicativi. Vengono proposti i meccanismi per automatizzare l’apprendimento automatico e per supportare l’interpretabilità dei modelli e dei risultati come Partial Dependence Plot, Permuted Feature Importance e altre. Gli esercizi sono descritti con Orange e Python con l’uso della libreria Keras/Tensorflow. Il testo è corredato di materiale di supporto ed è possibile scaricare gli esempi in Orange e i dati di prova.

Data Science Manuale Italiano – Deep Learning


Data Science Manuale Italiano – Deep Learning

Author: Mario A. B. Capurso

language: it

Publisher: Mario Capurso

Release Date:


DOWNLOAD





Questa opera segue il curriculum 2021 della Association for Computing Machinery per specialisti in Scienze dei Dati, con l’obiettivo di costituire un “Bignami” della Scienza ed Ingegneria dei Dati e facilitare il percorso di formazione personale a partire da competenze specialistiche in Informatica o Matematica o Statistica per un lettore di lingua madre italiana. Parte di una serie di testi, riepiloga prima di tutto la metodologia di lavoro standard CRISP DM utilizzata in questa opera e in progetti di Scienza dei Dati. Poichè questo testo utilizza Orange per gli aspetti applicativi, ne descrive l’installazione ed i widget. La fase di modellizzazione dei dati viene considerata nell’ottica dell’apprendimento automatico riepilogando i tipi di apprendimento automatico. Sono descritte le tecniche di Deep Learning considerando le architetture del Perceptron, Neocognitron, il neurone con Backpropagation e le funzioni di attivazione, le Feed Forward Networks, gli Autoencoders, le reti ricorrenti e le LSTM e GRU, le Transformer Neural Networks, le Convolutional Neural Networks e le Generative Adversarial Networks ed analizzati i blocchi costruttivi. Gli esercizi sono descritti con Orange e Python con l’uso della libreria Keras/Tensorflow. Il testo è corredato di materiale di supporto ed è possibile scaricare gli esempi in Orange e i dati di prova.

R for Data Science


R for Data Science

Author: Hadley Wickham

language: en

Publisher: "O'Reilly Media, Inc."

Release Date: 2016-12-12


DOWNLOAD





Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true "signals" in your dataset Communicate—learn R Markdown for integrating prose, code, and results