Data Science Class 8


Download Data Science Class 8 PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Data Science Class 8 book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Data Science Class 8


Data Science Class 8

Author: VK Jain

language: en

Publisher: Orange Education Pvt Ltd

Release Date: 2021-10-11


DOWNLOAD





TAGLINE Data Science is a multidisciplinary field that also interacts with various other technologies like Artificial Intelligence, Machine Learning, Deep Learning, the Internet of Things, etc. KEY FEATURES ● National Education Policy 2020 ● Activity: This section contains a topic based practical activity for the students to explore and learn. ● Higher Order Thinking Skills: This section contains the questions that are out of the box and helps the learner to think differently. ● Glossary: This section contains definition of common data science terms. ● Applied Project: This section contains an activity that applies the concepts of the chapter in real-life. ● Digital Solutions DESCRIPTION “Touchpad” Data Science book is designed as per the latest CBSE curriculum with an inter-disciplinary approach towards Mathematics, Statistics and Information Technology. The book inculcates real-life scenarios to explain the concepts and helps the students become better Data Science literates and pursue future endeavours confidently. To enrich the subject, this book contains different types of exercises like Objective Type Questions, Standard Questions and Higher Order Thinking Skills (HOTS). This book also includes Do You Know? and Activity which helps the students to learn and think outside the box. It helps the students to think and not just memorize, at the same time improving their cognitive ability. WHAT WILL YOU LEARN You will learn about: ● Data ● Data Science ● Data Visualisation ● Data Science and Artificial Intelligence WHO THIS BOOK IS FOR Grade - 8 TABLE OF CONTENTS 1. Introduction to Data 2. Introduction to Data Science 3. Data Visualisation 4. Data Science and Artificial Intelligence 5. Projects 6. Glossary

Data Science


Data Science

Author: Qurban A Memon

language: en

Publisher: CRC Press

Release Date: 2019-09-26


DOWNLOAD





The aim of this book is to provide an internationally respected collection of scientific research methods, technologies and applications in the area of data science. This book can prove useful to the researchers, professors, research students and practitioners as it reports novel research work on challenging topics in the area surrounding data science. In this book, some of the chapters are written in tutorial style concerning machine learning algorithms, data analysis, information design, infographics, relevant applications, etc. The book is structured as follows: • Part I: Data Science: Theory, Concepts, and Algorithms This part comprises five chapters on data Science theory, concepts, techniques and algorithms. • Part II: Data Design and Analysis This part comprises five chapters on data design and analysis. • Part III: Applications and New Trends in Data Science This part comprises four chapters on applications and new trends in data science.

R for Political Data Science


R for Political Data Science

Author: Francisco Urdinez

language: en

Publisher: CRC Press

Release Date: 2020-11-18


DOWNLOAD





R for Political Data Science: A Practical Guide is a handbook for political scientists new to R who want to learn the most useful and common ways to interpret and analyze political data. It was written by political scientists, thinking about the many real-world problems faced in their work. The book has 16 chapters and is organized in three sections. The first, on the use of R, is for those users who are learning R or are migrating from another software. The second section, on econometric models, covers OLS, binary and survival models, panel data, and causal inference. The third section is a data science toolbox of some the most useful tools in the discipline: data imputation, fuzzy merge of large datasets, web mining, quantitative text analysis, network analysis, mapping, spatial cluster analysis, and principal component analysis. Key features: Each chapter has the most up-to-date and simple option available for each task, assuming minimal prerequisites and no previous experience in R Makes extensive use of the Tidyverse, the group of packages that has revolutionized the use of R Provides a step-by-step guide that you can replicate using your own data Includes exercises in every chapter for course use or self-study Focuses on practical-based approaches to statistical inference rather than mathematical formulae Supplemented by an R package, including all data As the title suggests, this book is highly applied in nature, and is designed as a toolbox for the reader. It can be used in methods and data science courses, at both the undergraduate and graduate levels. It will be equally useful for a university student pursuing a PhD, political consultants, or a public official, all of whom need to transform their datasets into substantive and easily interpretable conclusions.