Data Quality Fundamentals Monte Carlo

Download Data Quality Fundamentals Monte Carlo PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Data Quality Fundamentals Monte Carlo book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Data Quality Fundamentals

Do your product dashboards look funky? Are your quarterly reports stale? Is the data set you're using broken or just plain wrong? These problems affect almost every team, yet they're usually addressed on an ad hoc basis and in a reactive manner. If you answered yes to these questions, this book is for you. Many data engineering teams today face the "good pipelines, bad data" problem. It doesn't matter how advanced your data infrastructure is if the data you're piping is bad. In this book, Barr Moses, Lior Gavish, and Molly Vorwerck, from the data observability company Monte Carlo, explain how to tackle data quality and trust at scale by leveraging best practices and technologies used by some of the world's most innovative companies. Build more trustworthy and reliable data pipelines Write scripts to make data checks and identify broken pipelines with data observability Learn how to set and maintain data SLAs, SLIs, and SLOs Develop and lead data quality initiatives at your company Learn how to treat data services and systems with the diligence of production software Automate data lineage graphs across your data ecosystem Build anomaly detectors for your critical data assets
Fundamentals of Spatial Data Quality

Author: Rodolphe Devillers
language: en
Publisher: John Wiley & Sons
Release Date: 2010-01-05
This book explains the concept of spatial data quality, a key theory for minimizing the risks of data misuse in a specific decision-making context. Drawing together chapters written by authors who are specialists in their particular field, it provides both the data producer and the data user perspectives on how to evaluate the quality of vector or raster data which are both produced and used. It also covers the key concepts in this field, such as: how to describe the quality of vector or raster data; how to enhance this quality; how to evaluate and document it, using methods such as metadata; how to communicate it to users; and how to relate it with the decision-making process. Also included is a Foreword written by Professor Michael F. Goodchild.
Fundamentals of Analytics Engineering

Author: Dumky De Wilde
language: en
Publisher: Packt Publishing Ltd
Release Date: 2024-03-29
Gain a holistic understanding of the analytics engineering lifecycle by integrating principles from both data analysis and engineering Key Features Discover how analytics engineering aligns with your organization's data strategy Access insights shared by a team of seven industry experts Tackle common analytics engineering problems faced by modern businesses Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionWritten by a team of 7 industry experts, Fundamentals of Analytics Engineering will introduce you to everything from foundational concepts to advanced skills to get started as an analytics engineer. After conquering data ingestion and techniques for data quality and scalability, you’ll learn about techniques such as data cleaning transformation, data modeling, SQL query optimization and reuse, and serving data across different platforms. Armed with this knowledge, you will implement a simple data platform from ingestion to visualization, using tools like Airbyte Cloud, Google BigQuery, dbt, and Tableau. You’ll also get to grips with strategies for data integrity with a focus on data quality and observability, along with collaborative coding practices like version control with Git. You’ll learn about advanced principles like CI/CD, automating workflows, gathering, scoping, and documenting business requirements, as well as data governance. By the end of this book, you’ll be armed with the essential techniques and best practices for developing scalable analytics solutions from end to end.What you will learn Design and implement data pipelines from ingestion to serving data Explore best practices for data modeling and schema design Scale data processing with cloud based analytics platforms and tools Understand the principles of data quality management and data governance Streamline code base with best practices like collaborative coding, version control, reviews and standards Automate and orchestrate data pipelines Drive business adoption with effective scoping and prioritization of analytics use cases Who this book is for This book is for data engineers and data analysts considering pivoting their careers into analytics engineering. Analytics engineers who want to upskill and search for gaps in their knowledge will also find this book helpful, as will other data professionals who want to understand the value of analytics engineering in their organization's journey toward data maturity. To get the most out of this book, you should have a basic understanding of data analysis and engineering concepts such as data cleaning, visualization, ETL and data warehousing.