Data Preprocessing With Python For Absolute Beginners


Download Data Preprocessing With Python For Absolute Beginners PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Data Preprocessing With Python For Absolute Beginners book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Data Preprocessing with Python for Absolute Beginners


Data Preprocessing with Python for Absolute Beginners

Author: A. I. Sciences OU

language: en

Publisher:

Release Date: 2021-03-25


DOWNLOAD





This book is dedicated to data preparation and explains how to perform different data preparation techniques on various datasets using different data preparation libraries written in the Python programming language.Key Features* A crash course in Python to fill any gaps in prerequisite knowledge and a solid foundation on which to build your new skills* A complete data preparation pipeline for your guided practice* Three real-world projects covering each major task to cement your learned skills in data preparation, classification, and regressionBook DescriptionThe book follows a straightforward approach. It is divided into nine chapters. Chapter 1 introduces the basic concept of data preparation and installation steps for the software that we will need to perform data preparation in this book. Chapter 1 also contains a crash course on Python, followed by a brief overview of different data types in Chapter 2. You will then learn how to handle missing values in the data, while the categorical encoding of numeric data is explained in Chapter 4.The second half of the course presents data discretization and describes the handling of outliers' process. Chapter 7 demonstrates how to scale features in the dataset. Subsequent chapters teach you to handle mixed and DateTime data type, balance data, and practice resampling. A full data preparation final project is also available at the end of the book.Different types of data preprocessing techniques have been explained theoretically, followed by practical examples in each chapter. Each chapter also contains an exercise that students can use to evaluate their understanding of the chapter's concepts. By the end of this course, you will have built a solid working knowledge in data preparation--the first steps to any data science or machine learning career and an essential skillset for any aspiring developer.The code bundle for this course is available at https://www.aispublishing.net/book-data-preprocessingWhat you will learn* Explore different libraries for data preparation* Understand data types* Handle missing data* Encode categorical data* Discretize data* Learn to handle outliers* Practice feature scaling* Handle mixed and DateTime variables and imbalanced datasets* Employ your new skills to complete projects in data preparation, classification, and regressionWho this book is forIn addition to beginners in data preparation with Python, this book can also be used as a reference manual by intermediate and experienced programmers. It contains data preprocessing code samples using multiple data visualization libraries.

Data Preprocessing with Python for Absolute Beginners


Data Preprocessing with Python for Absolute Beginners

Author: Ai Publishing

language: en

Publisher:

Release Date: 2020-03-21


DOWNLOAD





Are you looking for a hands-on approach to learn Data Preprocessing techniques fast? Do you need to start learning Python for Data Preparation from Scratch? This book is for you.This book is dedicated to data preparation and explains how to perform different data preparation techniques on a variety of datasets using various data preparation libraries written in the Python programming language. It is suggested that you use this book for data preparation purposes only and not for data science or machine learning. For the application of data preparation in data science and machine learning, read this book in conjunction with dedicated books on machine learning and data science. This book explains the process of data preparation using various libraries from scratch. All the codes and datasets have been provided. However, to download data preparation libraries, you will need the internet. In addition to beginners to data preparation with Python, this book can also be used as a reference manual by intermediate and experienced programmers as it contains data preparation code samples using multiple data visualization libraries. What this book offers... The book follows a very simple approach. It is divided into nine chapters. Chapter 1 introduces the basic concept of data preparation, along with the installation steps for the software that we will need to perform data preparation in this book. Chapter 1 also contains a crash course on Python. A brief overview of different data types is given in Chapter 2. Chapter 3 explains how to handle missing values in the data, while the categorical encoding of numeric data is explained in Chapter 4. Data discretization is presented in Chapter 5. Chapter 6 explains the process of handline outliers, while Chapter 7 explains how to scale features in the dataset. Handling of mixed and datetime data type is explained in Chapter 8, while data balancing and resampling has been explained in Chapter 9. A full data preparation final project is also available at the end of the book. In each chapter, different types of data preparation techniques have been explained theoretically, followed by practical examples. Each chapter also contains an exercise that students can use to evaluate their understanding of the concepts explained in the chapter.Clear and Easy to Understand SolutionsAll solutions in this book are extensively tested by a group of beta readers. The solutions provided are simplified as much as possible so that they can serve as examples for you to refer to when you are learning a new skill.Topics Covered: What Is Data Preparation Python Crash Course Different Libraries for Data Preparation Understanding Data Types Handling Missing Data Encoding Categorical Data Data Discretization Outlier Handling Feature Scaling Handling Mixed and DateTime Variables Handling Imbalanced Datasets A Complete Data Preparation Pipeline Project 1 - Data Preparation Project 2 - Classification Project Project 3 - Regression Project Click the BUY button and download the book now to start learning Data Preprocessing Using Python.

Data Preprocessing With Python for Absolute Beginners


Data Preprocessing With Python for Absolute Beginners

Author: AI. Publishing

language: en

Publisher:

Release Date: 2020


DOWNLOAD