Data Points Visualization That Means Something Wiley


Download Data Points Visualization That Means Something Wiley PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Data Points Visualization That Means Something Wiley book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Data Points


Data Points

Author: Nathan Yau

language: en

Publisher: John Wiley & Sons

Release Date: 2013-03-25


DOWNLOAD





A fresh look at visualization from the author of Visualize This Whether it's statistical charts, geographic maps, or the snappy graphical statistics you see on your favorite news sites, the art of data graphics or visualization is fast becoming a movement of its own. In Data Points: Visualization That Means Something, author Nathan Yau presents an intriguing complement to his bestseller Visualize This, this time focusing on the graphics side of data analysis. Using examples from art, design, business, statistics, cartography, and online media, he explores both standard-and not so standard-concepts and ideas about illustrating data. Shares intriguing ideas from Nathan Yau, author of Visualize This and creator of flowingdata.com, with over 66,000 subscribers Focuses on visualization, data graphics that help viewers see trends and patterns they might not otherwise see in a table Includes examples from the author's own illustrations, as well as from professionals in statistics, art, design, business, computer science, cartography, and more Examines standard rules across all visualization applications, then explores when and where you can break those rules Create visualizations that register at all levels, with Data Points: Visualization That Means Something.

Storytelling with Data


Storytelling with Data

Author: Cole Nussbaumer Knaflic

language: en

Publisher: John Wiley & Sons

Release Date: 2015-10-09


DOWNLOAD





Don't simply show your data—tell a story with it! Storytelling with Data teaches you the fundamentals of data visualization and how to communicate effectively with data. You'll discover the power of storytelling and the way to make data a pivotal point in your story. The lessons in this illuminative text are grounded in theory, but made accessible through numerous real-world examples—ready for immediate application to your next graph or presentation. Storytelling is not an inherent skill, especially when it comes to data visualization, and the tools at our disposal don't make it any easier. This book demonstrates how to go beyond conventional tools to reach the root of your data, and how to use your data to create an engaging, informative, compelling story. Specifically, you'll learn how to: Understand the importance of context and audience Determine the appropriate type of graph for your situation Recognize and eliminate the clutter clouding your information Direct your audience's attention to the most important parts of your data Think like a designer and utilize concepts of design in data visualization Leverage the power of storytelling to help your message resonate with your audience Together, the lessons in this book will help you turn your data into high impact visual stories that stick with your audience. Rid your world of ineffective graphs, one exploding 3D pie chart at a time. There is a story in your data—Storytelling with Data will give you the skills and power to tell it.

Making Data Visual


Making Data Visual

Author: Danyel Fisher

language: en

Publisher: "O'Reilly Media, Inc."

Release Date: 2017-12-20


DOWNLOAD





"You have a mound of data sitting in front of you and a suite of computation tools at your disposal. And yet, you're stumped as to how to turn that data into insight. Which part of that data actually matters, and where is this insight hidden? If you're a data scientist who struggles to navigate the murky space between data and insight, this book will help you think about and reshape data for visual data exploration. It's ideal for relatively new data scientists, who may be computer-knowledgeable and data-knowledgeable, but do not yet know how to create effective, explorable representations of data. With this book, you'll learn: Task analysis, driven by a series of leading questions that draw out the important aspects of the data to be explored; Visualization patterns, each of which take a different perspective on data and answer different questions; A taxonomy of visualizations for common data types; Techniques for gathering design requirements; When and where to make use of statistical methods."--