Data Points Visualization That Means Something Pdf Free


Download Data Points Visualization That Means Something Pdf Free PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Data Points Visualization That Means Something Pdf Free book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Data Points


Data Points

Author: Nathan Yau

language: en

Publisher: John Wiley & Sons

Release Date: 2013-03-25


DOWNLOAD





A fresh look at visualization from the author of Visualize This Whether it's statistical charts, geographic maps, or the snappy graphical statistics you see on your favorite news sites, the art of data graphics or visualization is fast becoming a movement of its own. In Data Points: Visualization That Means Something, author Nathan Yau presents an intriguing complement to his bestseller Visualize This, this time focusing on the graphics side of data analysis. Using examples from art, design, business, statistics, cartography, and online media, he explores both standard-and not so standard-concepts and ideas about illustrating data. Shares intriguing ideas from Nathan Yau, author of Visualize This and creator of flowingdata.com, with over 66,000 subscribers Focuses on visualization, data graphics that help viewers see trends and patterns they might not otherwise see in a table Includes examples from the author's own illustrations, as well as from professionals in statistics, art, design, business, computer science, cartography, and more Examines standard rules across all visualization applications, then explores when and where you can break those rules Create visualizations that register at all levels, with Data Points: Visualization That Means Something.

Data Visualization Made Simple


Data Visualization Made Simple

Author: Kristen Sosulski

language: en

Publisher: Routledge

Release Date: 2018-09-27


DOWNLOAD





Data Visualization Made Simple is a practical guide to the fundamentals, strategies, and real-world cases for data visualization, an essential skill required in today’s information-rich world. With foundations rooted in statistics, psychology, and computer science, data visualization offers practitioners in almost every field a coherent way to share findings from original research, big data, learning analytics, and more. In nine appealing chapters, the book: examines the role of data graphics in decision-making, sharing information, sparking discussions, and inspiring future research; scrutinizes data graphics, deliberates on the messages they convey, and looks at options for design visualization; and includes cases and interviews to provide a contemporary view of how data graphics are used by professionals across industries Both novices and seasoned designers in education, business, and other areas can use this book’s effective, linear process to develop data visualization literacy and promote exploratory, inquiry-based approaches to visualization problems.

Making Data Visual


Making Data Visual

Author: Danyel Fisher

language: en

Publisher: "O'Reilly Media, Inc."

Release Date: 2017-12-20


DOWNLOAD





"You have a mound of data sitting in front of you and a suite of computation tools at your disposal. And yet, you're stumped as to how to turn that data into insight. Which part of that data actually matters, and where is this insight hidden? If you're a data scientist who struggles to navigate the murky space between data and insight, this book will help you think about and reshape data for visual data exploration. It's ideal for relatively new data scientists, who may be computer-knowledgeable and data-knowledgeable, but do not yet know how to create effective, explorable representations of data. With this book, you'll learn: Task analysis, driven by a series of leading questions that draw out the important aspects of the data to be explored; Visualization patterns, each of which take a different perspective on data and answer different questions; A taxonomy of visualizations for common data types; Techniques for gathering design requirements; When and where to make use of statistical methods."--