Data Pipelines With Apache Airflow 2nd Edition

Download Data Pipelines With Apache Airflow 2nd Edition PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Data Pipelines With Apache Airflow 2nd Edition book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Data Pipelines with Apache Airflow

Author: Julian de Ruiter
language: en
Publisher: Simon and Schuster
Release Date: 2021-04-05
"An Airflow bible. Useful for all kinds of users, from novice to expert." - Rambabu Posa, Sai Aashika Consultancy Data Pipelines with Apache Airflow teaches you how to build and maintain effective data pipelines. A successful pipeline moves data efficiently, minimizing pauses and blockages between tasks, keeping every process along the way operational. Apache Airflow provides a single customizable environment for building and managing data pipelines, eliminating the need for a hodgepodge collection of tools, snowflake code, and homegrown processes. Using real-world scenarios and examples, Data Pipelines with Apache Airflow teaches you how to simplify and automate data pipelines, reduce operational overhead, and smoothly integrate all the technologies in your stack. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Data pipelines manage the flow of data from initial collection through consolidation, cleaning, analysis, visualization, and more. Apache Airflow provides a single platform you can use to design, implement, monitor, and maintain your pipelines. Its easy-to-use UI, plug-and-play options, and flexible Python scripting make Airflow perfect for any data management task. About the book Data Pipelines with Apache Airflow teaches you how to build and maintain effective data pipelines. You’ll explore the most common usage patterns, including aggregating multiple data sources, connecting to and from data lakes, and cloud deployment. Part reference and part tutorial, this practical guide covers every aspect of the directed acyclic graphs (DAGs) that power Airflow, and how to customize them for your pipeline’s needs. What's inside Build, test, and deploy Airflow pipelines as DAGs Automate moving and transforming data Analyze historical datasets using backfilling Develop custom components Set up Airflow in production environments About the reader For DevOps, data engineers, machine learning engineers, and sysadmins with intermediate Python skills. About the author Bas Harenslak and Julian de Ruiter are data engineers with extensive experience using Airflow to develop pipelines for major companies. Bas is also an Airflow committer. Table of Contents PART 1 - GETTING STARTED 1 Meet Apache Airflow 2 Anatomy of an Airflow DAG 3 Scheduling in Airflow 4 Templating tasks using the Airflow context 5 Defining dependencies between tasks PART 2 - BEYOND THE BASICS 6 Triggering workflows 7 Communicating with external systems 8 Building custom components 9 Testing 10 Running tasks in containers PART 3 - AIRFLOW IN PRACTICE 11 Best practices 12 Operating Airflow in production 13 Securing Airflow 14 Project: Finding the fastest way to get around NYC PART 4 - IN THE CLOUDS 15 Airflow in the clouds 16 Airflow on AWS 17 Airflow on Azure 18 Airflow in GCP
Data Pipelines with Apache Airflow

Author: Bas P. Harenslak
language: en
Publisher: Simon and Schuster
Release Date: 2021-04-27
For DevOps, data engineers, machine learning engineers, and sysadmins with intermediate Python skills"--Back cover.
Building ETL Pipelines with Python

Author: Brij Kishore Pandey
language: en
Publisher: Packt Publishing Ltd
Release Date: 2023-09-29
Develop production-ready ETL pipelines by leveraging Python libraries and deploying them for suitable use cases Key Features Understand how to set up a Python virtual environment with PyCharm Learn functional and object-oriented approaches to create ETL pipelines Create robust CI/CD processes for ETL pipelines Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionModern extract, transform, and load (ETL) pipelines for data engineering have favored the Python language for its broad range of uses and a large assortment of tools, applications, and open source components. With its simplicity and extensive library support, Python has emerged as the undisputed choice for data processing. In this book, you’ll walk through the end-to-end process of ETL data pipeline development, starting with an introduction to the fundamentals of data pipelines and establishing a Python development environment to create pipelines. Once you've explored the ETL pipeline design principles and ET development process, you'll be equipped to design custom ETL pipelines. Next, you'll get to grips with the steps in the ETL process, which involves extracting valuable data; performing transformations, through cleaning, manipulation, and ensuring data integrity; and ultimately loading the processed data into storage systems. You’ll also review several ETL modules in Python, comparing their pros and cons when building data pipelines and leveraging cloud tools, such as AWS, to create scalable data pipelines. Lastly, you’ll learn about the concept of test-driven development for ETL pipelines to ensure safe deployments. By the end of this book, you’ll have worked on several hands-on examples to create high-performance ETL pipelines to develop robust, scalable, and resilient environments using Python.What you will learn Explore the available libraries and tools to create ETL pipelines using Python Write clean and resilient ETL code in Python that can be extended and easily scaled Understand the best practices and design principles for creating ETL pipelines Orchestrate the ETL process and scale the ETL pipeline effectively Discover tools and services available in AWS for ETL pipelines Understand different testing strategies and implement them with the ETL process Who this book is for If you are a data engineer or software professional looking to create enterprise-level ETL pipelines using Python, this book is for you. Fundamental knowledge of Python is a prerequisite.