Data Modeler S Workbench

Download Data Modeler S Workbench PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Data Modeler S Workbench book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Data Modeler's Workbench

A goldmine of valuable tools for data modelers! Data modelers render raw data-names, addresses, and salestotals, for instance-into information such as customer profiles andseasonal buying patterns that can be used for making criticalbusiness decisions. This book brings together thirty of the mosteffective tools for solving common modeling problems. The authorprovides an example of each tool and describes what it is, why itis needed, and how it is generally used to model data for bothdatabases and data warehouses, along with tips and warnings. Blanksample copies of all worksheets and checklists described areprovided in an appendix. Companion Web site features updates on the latest tools andtechniques, plus links to related sites offering automatedtools.
Data Modeling Made Simple with CA ERwin Data Modeler r8

Author: Donna Burbank
language: en
Publisher: Technics Publications
Release Date: 2011-08-01
Data Modeling Made Simple with CA ERwin Data Modeler r8 will provide the business or IT professional with a practical working knowledge of data modeling concepts and best practices, and how to apply these principles with CA ERwin Data Modeler r8. You’ll build many CA ERwin data models along the way, mastering first the fundamentals and later in the book the more advanced features of CA ERwin Data Modeler. This book combines real-world experience and best practices with down to earth advice, humor, and even cartoons to help you master the following ten objectives: 1. Understand the basics of data modeling and relational theory, and how to apply these skills using CA ERwin Data Modeler 2. Read a data model of any size and complexity with the same confidence as reading a book 3. Understand the difference between conceptual, logical, and physical models, and how to effectively build these models using CA ERwin’s Data Modelers Design Layer Architecture 4. Apply techniques to turn a logical data model into an efficient physical design and vice-versa through forward and reverse engineering, for both ‘top down’ and bottom-up design 5. Learn how to create reusable domains, naming standards, UDPs, and model templates in CA ERwin Data Modeler to reduce modeling time, improve data quality, and increase enterprise consistency 6. Share data model information with various audiences using model formatting and layout techniques, reporting, and metadata exchange 7. Use the new workspace customization features in CA ERwin Data Modeler r8 to create a workflow suited to your own individual needs 8. Leverage the new Bulk Editing features in CA ERwin Data Modeler r8 for mass metadata updates, as well as import/export with Microsoft Excel 9. Compare and merge model changes using CA ERwin Data Modelers Complete Compare features 10. Optimize the organization and layout of your data models through the use of Subject Areas, Diagrams, Display Themes, and more Section I provides an overview of data modeling: what it is, and why it is needed. The basic features of CA ERwin Data Modeler are introduced with a simple, easy-to-follow example. Section II introduces the basic building blocks of a data model, including entities, relationships, keys, and more. How-to examples using CA ERwin Data Modeler are provided for each of these building blocks, as well as ‘real world’ scenarios for context. Section III covers the creation of reusable standards, and their importance in the organization. From standard data modeling constructs such as domains to CA ERwin-specific features such as UDPs, this section covers step-by-step examples of how to create these standards in CA ERwin Data Modeling, from creation, to template building, to sharing standards with end users through reporting and queries. Section IV discusses conceptual, logical, and physical data models, and provides a comprehensive case study using CA ERwin Data Modeler to show the interrelationships between these models using CA ERwin’s Design Layer Architecture. Real world examples are provided from requirements gathering, to working with business sponsors, to the hands-on nitty-gritty details of building conceptual, logical, and physical data models with CA ERwin Data Modeler r8. From the Foreword by Tom Bilcze, President, CA Technologies Modeling Global User Community: Data Modeling Made Simple with CA ERwin Data Modeler r8 is an excellent resource for the ERwin community. The data modeling community is a diverse collection of data professionals with many perspectives of data modeling and different levels of skill and experience. Steve Hoberman and Donna Burbank guide newbie modelers through the basics of data modeling and CA ERwin r8. Through the liberal use of illustrations, the inexperienced data modeler is graphically walked through the components of data models and how to create them in CA ERwin r8. As an experienced data modeler, Steve and Donna give me a handbook for effectively using the new and enhanced features of this release to bring my art form to life. The book delves into advanced modeling topics and techniques by continuing the liberal use of illustrations. It speaks to the importance of a defined data modeling architecture with soundly modeled data to assist the enterprise in understanding of the value of data. It guides me in applying the finishing touches to my data designs.
Analyst Workbenches

Analyst Workbenches examines various aspects of analyst workbenches and the tasks and data that they should support. The major advances and state of the art in analyst workbenches are discussed. A comprehensive list of the available analyst workbenches, both the experimental and the commercial products, is provided. Comprised of three parts, this book begins by describing International Computers Ltd's approach to automating analysis and design. It then explains what business analysis really means, outlines the principal features of analyst workbenches, and considers the ways in which they can solve the problems. The following chapters focus on how the analyst can deal with performance issues and lay proper foundations for the later, more detailed, work of the designer; the use of artificial intelligence techniques in workbenches; and strategic information systems planning technology. Integrated Project Support Environments (IPSEs) and the workbench-related phenomenon of mapping are also discussed. The final chapter evaluates future prospects for workbench products. This monograph will be a valuable resource for systems analysts and designers.