Data Mining Methods And Models

Download Data Mining Methods And Models PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Data Mining Methods And Models book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Data Mining Methods and Models

Author: Daniel T. Larose
language: en
Publisher: John Wiley & Sons
Release Date: 2006-02-02
Apply powerful Data Mining Methods and Models to Leverage your Data for Actionable Results Data Mining Methods and Models provides: * The latest techniques for uncovering hidden nuggets of information * The insight into how the data mining algorithms actually work * The hands-on experience of performing data mining on large data sets Data Mining Methods and Models: * Applies a "white box" methodology, emphasizing an understanding of the model structures underlying the softwareWalks the reader through the various algorithms and provides examples of the operation of the algorithms on actual large data sets, including a detailed case study, "Modeling Response to Direct-Mail Marketing" * Tests the reader's level of understanding of the concepts and methodologies, with over 110 chapter exercises * Demonstrates the Clementine data mining software suite, WEKA open source data mining software, SPSS statistical software, and Minitab statistical software * Includes a companion Web site, www.dataminingconsultant.com, where the data sets used in the book may be downloaded, along with a comprehensive set of data mining resources. Faculty adopters of the book have access to an array of helpful resources, including solutions to all exercises, a PowerPoint(r) presentation of each chapter, sample data mining course projects and accompanying data sets, and multiple-choice chapter quizzes. With its emphasis on learning by doing, this is an excellent textbook for students in business, computer science, and statistics, as well as a problem-solving reference for data analysts and professionals in the field. An Instructor's Manual presenting detailed solutions to all the problems in the book is available onlne.
Data Mining Methods & Models

The book introduces readers to data mining methods and models, including association rules, clustering, K-nearest neighbor, statistical inference, neural networks, linear and logistic regression, and multivariate analysis. Taking a unified approach based on CRISP methodology, the book discusses the latest techniques for uncovering hidden nuggets of information and provides insight into how the data mining algorithms actually work with hands-on experience performing data mining on large data sets. · Dimension Reduction Methods · Regression Modeling · Multiple Regression and Model Building · Logistic Regression · Naïve Bayes and Bayesian Networks · Genetic Algorithms · Case Study: Modeling Response to Direct-Mail Marketing
Data Mining

Author: Mehmed Kantardzic
language: en
Publisher: John Wiley & Sons
Release Date: 2019-10-23
Presents the latest techniques for analyzing and extracting information from large amounts of data in high-dimensional data spaces The revised and updated third edition of Data Mining contains in one volume an introduction to a systematic approach to the analysis of large data sets that integrates results from disciplines such as statistics, artificial intelligence, data bases, pattern recognition, and computer visualization. Advances in deep learning technology have opened an entire new spectrum of applications. The author—a noted expert on the topic—explains the basic concepts, models, and methodologies that have been developed in recent years. This new edition introduces and expands on many topics, as well as providing revised sections on software tools and data mining applications. Additional changes include an updated list of references for further study, and an extended list of problems and questions that relate to each chapter.This third edition presents new and expanded information that: • Explores big data and cloud computing • Examines deep learning • Includes information on convolutional neural networks (CNN) • Offers reinforcement learning • Contains semi-supervised learning and S3VM • Reviews model evaluation for unbalanced data Written for graduate students in computer science, computer engineers, and computer information systems professionals, the updated third edition of Data Mining continues to provide an essential guide to the basic principles of the technology and the most recent developments in the field.