Data Literacy With Python


Download Data Literacy With Python PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Data Literacy With Python book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Data Literacy With Python


Data Literacy With Python

Author: Oswald Campesato

language: en

Publisher: Stylus Publishing, LLC

Release Date: 2023-11-20


DOWNLOAD





The purpose of this book is to usher readers into the world of data, ensuring a comprehensive understanding of its nuances, intricacies, and complexities. With Python 3 as the primary medium, the book underscores the pivotal role of data in modern industries, and how its adept management can lead to insightful decision-making. The book provides a quick introduction to foundational data-related tasks, priming the readers for more advanced concepts of model training introduced later on. Through detailed, step-by-step Python code examples, the reader will master training models, beginning with the kNN algorithm, and then smoothly transitioning to other classifiers, by tweaking mere lines of code. Tools like Sweetviz, Skimpy, Matplotlib, and Seaborn are introduced, offering readers a hands-on experience in rendering charts and graphs. Companion files with source code and data sets are available by writing to the publisher. FEATURES: Introduces tools like Sweetviz, Skimpy, Matplotlib, and Seaborn offering readers a hands-on experience in rendering charts and graphs Companion files with numerous Python code samples

Practical Data Analysis Using Jupyter Notebook


Practical Data Analysis Using Jupyter Notebook

Author: Marc Wintjen

language: en

Publisher: Packt Publishing Ltd

Release Date: 2020-06-19


DOWNLOAD





Understand data analysis concepts to make accurate decisions based on data using Python programming and Jupyter Notebook Key FeaturesFind out how to use Python code to extract insights from data using real-world examplesWork with structured data and free text sources to answer questions and add value using dataPerform data analysis from scratch with the help of clear explanations for cleaning, transforming, and visualizing dataBook Description Data literacy is the ability to read, analyze, work with, and argue using data. Data analysis is the process of cleaning and modeling your data to discover useful information. This book combines these two concepts by sharing proven techniques and hands-on examples so that you can learn how to communicate effectively using data. After introducing you to the basics of data analysis using Jupyter Notebook and Python, the book will take you through the fundamentals of data. Packed with practical examples, this guide will teach you how to clean, wrangle, analyze, and visualize data to gain useful insights, and you'll discover how to answer questions using data with easy-to-follow steps. Later chapters teach you about storytelling with data using charts, such as histograms and scatter plots. As you advance, you'll understand how to work with unstructured data using natural language processing (NLP) techniques to perform sentiment analysis. All the knowledge you gain will help you discover key patterns and trends in data using real-world examples. In addition to this, you will learn how to handle data of varying complexity to perform efficient data analysis using modern Python libraries. By the end of this book, you'll have gained the practical skills you need to analyze data with confidence. What you will learnUnderstand the importance of data literacy and how to communicate effectively using dataFind out how to use Python packages such as NumPy, pandas, Matplotlib, and the Natural Language Toolkit (NLTK) for data analysisWrangle data and create DataFrames using pandasProduce charts and data visualizations using time-series datasetsDiscover relationships and how to join data together using SQLUse NLP techniques to work with unstructured data to create sentiment analysis modelsDiscover patterns in real-world datasets that provide accurate insightsWho this book is for This book is for aspiring data analysts and data scientists looking for hands-on tutorials and real-world examples to understand data analysis concepts using SQL, Python, and Jupyter Notebook. Anyone looking to evolve their skills to become data-driven personally and professionally will also find this book useful. No prior knowledge of data analysis or programming is required to get started with this book.

Humanities Data Analysis


Humanities Data Analysis

Author: Folgert Karsdorp

language: en

Publisher: Princeton University Press

Release Date: 2021-01-12


DOWNLOAD





A practical guide to data-intensive humanities research using the Python programming language The use of quantitative methods in the humanities and related social sciences has increased considerably in recent years, allowing researchers to discover patterns in a vast range of source materials. Despite this growth, there are few resources addressed to students and scholars who wish to take advantage of these powerful tools. Humanities Data Analysis offers the first intermediate-level guide to quantitative data analysis for humanities students and scholars using the Python programming language. This practical textbook, which assumes a basic knowledge of Python, teaches readers the necessary skills for conducting humanities research in the rapidly developing digital environment. The book begins with an overview of the place of data science in the humanities, and proceeds to cover data carpentry: the essential techniques for gathering, cleaning, representing, and transforming textual and tabular data. Then, drawing from real-world, publicly available data sets that cover a variety of scholarly domains, the book delves into detailed case studies. Focusing on textual data analysis, the authors explore such diverse topics as network analysis, genre theory, onomastics, literacy, author attribution, mapping, stylometry, topic modeling, and time series analysis. Exercises and resources for further reading are provided at the end of each chapter. An ideal resource for humanities students and scholars aiming to take their Python skills to the next level, Humanities Data Analysis illustrates the benefits that quantitative methods can bring to complex research questions. Appropriate for advanced undergraduates, graduate students, and scholars with a basic knowledge of Python Applicable to many humanities disciplines, including history, literature, and sociology Offers real-world case studies using publicly available data sets Provides exercises at the end of each chapter for students to test acquired skills Emphasizes visual storytelling via data visualizations