Data Driven Diagnostics


Download Data Driven Diagnostics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Data Driven Diagnostics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Data-Driven Science and Engineering


Data-Driven Science and Engineering

Author: Steven L. Brunton

language: en

Publisher: Cambridge University Press

Release Date: 2022-05-05


DOWNLOAD





A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.

Fault Detection and Diagnosis in Industrial Systems


Fault Detection and Diagnosis in Industrial Systems

Author: L.H. Chiang

language: en

Publisher: Springer Science & Business Media

Release Date: 2012-12-06


DOWNLOAD





Early and accurate fault detection and diagnosis for modern chemical plants can minimise downtime, increase the safety of plant operations, and reduce manufacturing costs. The process monitoring techniques that have been most effective in practice are based on models constructed almost entirely from process data. The goal of the book is to present the theoretical background and practical techniques for data-driven process monitoring. Process monitoring techniques presented include: Data-driven methods - principal component analysis, Fisher discriminant analysis, partial least squares and canonical variate analysis; Analytical Methods - parameter estimation, observer-based methods and parity relations; Knowledge-based methods - causal analysis, expert systems and pattern recognition. The text demonstrates the application of all of the data-driven process monitoring techniques to the Tennessee Eastman plant simulator - demonstrating the strengths and weaknesses of each approach in detail. This aids the reader in selecting the right method for his process application. Plant simulator and homework problems in which students apply the process monitoring techniques to a non-trivial simulated process, and can compare their performance with that obtained in the case studies in the text are included. A number of additional homework problems encourage the reader to implement and obtain a deeper understanding of the techniques. The reader will obtain a background in data-driven techniques for fault detection and diagnosis, including the ability to implement the techniques and to know how to select the right technique for a particular application.

Data-driven Diagnostics and Prognostics for Complex Systems


Data-driven Diagnostics and Prognostics for Complex Systems

Author: Junchuan Shi

language: en

Publisher:

Release Date: 2022


DOWNLOAD





Recent advances in artificial intelligence or machine learning have the potential to significantly improve the effectiveness and efficiency of diagnostic and prognostic techniques. The objective of this research is to develop novel data-driven predictive models with machine learning and deep learning algorithms that allow one to model the degradation, detect the faults, as well as predict the remaining useful life (RUL) of complex systems, including bearings, gearboxes, and Lithium-ion (Li-ion) batteries. First, an enhanced ensemble learning algorithm is developed to improve the accuracy of RUL prediction by selecting diverse base learners and features at different degradation stages. The proposed method with increased diversity in base learners and features was demonstrated to be more accurate than other reported algorithms. Second, a convolutional long short-term memory (Conv-LSTM) approach is introduced to accurately classify the type, position, and direction of gear faults under different operating conditions by extracting spatiotemporal features from multiple sensors. The proposed method achieved 95% classification accuracy of fault type and 80% classification accuracy of fault location. Third, a deep learning method that combines convolutional neural networks (CNN) and bi-directional long short-term memory (BiLSTM) is developed to predict the discharge capacity and the end-of-discharge (EOD) of Li-ion batteries. The results show that by considering the discharge capacity estimated by CNN, the MAPE of EOD prediction using BiLSTM decreased from 8.52% to 3.21%. Fourth, a physics-informed machine learning method that combines the calendar and cycle aging (CCA) model and a LSTM model is developed to predict battery degradation behavior and RUL under different working conditions. The results show that the proposed method can predict the RUL of batteries accurately (10% in term of MAPE).