Data Complexity In Pattern Recognition


Download Data Complexity In Pattern Recognition PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Data Complexity In Pattern Recognition book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Data Complexity in Pattern Recognition


Data Complexity in Pattern Recognition

Author: Mitra Basu

language: en

Publisher: Springer Science & Business Media

Release Date: 2006-12-22


DOWNLOAD





Machines capable of automatic pattern recognition have many fascinating uses in science & engineering as well as in our daily lives. Algorithms for supervised classification, where one infers a decision boundary from a set of training examples, are at the core of this capability. This book takes a close view of data complexity & its role in shaping the theories & techniques in different disciplines & asks: What is missing from current classification techniques? When the automatic classifiers are not perfect, is it a deficiency of the algorithms by design, or is it a difficulty intrinsic to the classification task? How do we know whether we have exploited to the fullest extent the knowledge embedded in the training data? Uunique in its comprehensive coverage & multidisciplinary approach from various methodological & practical perspectives, researchers & practitioners will find this book an insightful reference to learn about current available techniques as well as application areas.

Structural, Syntactic, and Statistical Pattern Recognition


Structural, Syntactic, and Statistical Pattern Recognition

Author: Niels da Vitoria Lobo

language: en

Publisher: Springer

Release Date: 2008-12-02


DOWNLOAD





This volume in the Springer Lecture Notes in Computer Science (LNCS) series contains 98 papers presented at the S+SSPR 2008 workshops. S+SSPR 2008 was the sixth time that the SPR and SSPR workshops organized by Technical Committees, TC1 and TC2, of the International Association for Pattern Rec- nition (IAPR) wereheld as joint workshops. S+SSPR 2008was held in Orlando, Florida, the family entertainment capital of the world, on the beautiful campus of the University of Central Florida, one of the up and coming metropolitan universities in the USA. S+SSPR 2008 was held during December 4–6, 2008 only a few days before the 19th International Conference on Pattern Recog- tion(ICPR2008),whichwasheldin Tampa,onlytwo hoursawayfromOrlando, thus giving the opportunity of both conferences to attendees to enjoy the many attractions o?ered by two neighboring cities in the state of Florida. SPR 2008 and SSPR 2008 received a total of 175 paper submissions from many di?erent countries around the world, thus giving the workshop an int- national clout, as was the case for past workshops. This volume contains 98 accepted papers: 56 for oral presentations and 42 for poster presentations. In addition to parallel oral sessions for SPR and SSPR, there was also one joint oral session with papers of interest to both the SPR and SSPR communities. A recent trend that has emerged in the pattern recognition and machine lea- ing research communities is the study of graph-based methods that integrate statistical andstructural approaches.

A Probabilistic Theory of Pattern Recognition


A Probabilistic Theory of Pattern Recognition

Author: Luc Devroye

language: en

Publisher: Springer Science & Business Media

Release Date: 2013-11-27


DOWNLOAD





Pattern recognition presents one of the most significant challenges for scientists and engineers, and many different approaches have been proposed. The aim of this book is to provide a self-contained account of probabilistic analysis of these approaches. The book includes a discussion of distance measures, nonparametric methods based on kernels or nearest neighbors, Vapnik-Chervonenkis theory, epsilon entropy, parametric classification, error estimation, free classifiers, and neural networks. Wherever possible, distribution-free properties and inequalities are derived. A substantial portion of the results or the analysis is new. Over 430 problems and exercises complement the material.