Data Association For Multi Object Visual Tracking

Download Data Association For Multi Object Visual Tracking PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Data Association For Multi Object Visual Tracking book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Data Association for Multi-Object Visual Tracking

Author: Margrit Betke
language: en
Publisher: Morgan & Claypool Publishers
Release Date: 2016-10-11
In the human quest for scientific knowledge, empirical evidence is collected by visual perception. Tracking with computer vision takes on the important role to reveal complex patterns of motion that exist in the world we live in. Multi-object tracking algorithms provide new information on how groups and individual group members move through three-dimensional space. They enable us to study in depth the relationships between individuals in moving groups. These may be interactions of pedestrians on a crowded sidewalk, living cells under a microscope, or bats emerging in large numbers from a cave. Being able to track pedestrians is important for urban planning; analysis of cell interactions supports research on biomaterial design; and the study of bat and bird flight can guide the engineering of aircraft. We were inspired by this multitude of applications to consider the crucial component needed to advance a single-object tracking system to a multi-object tracking system—data association. Data association in the most general sense is the process of matching information about newly observed objects with information that was previously observed about them. This information may be about their identities, positions, or trajectories. Algorithms for data association search for matches that optimize certain match criteria and are subject to physical conditions. They can therefore be formulated as solving a "constrained optimization problem"—the problem of optimizing an objective function of some variables in the presence of constraints on these variables. As such, data association methods have a strong mathematical grounding and are valuable general tools for computer vision researchers. This book serves as a tutorial on data association methods, intended for both students and experts in computer vision. We describe the basic research problems, review the current state of the art, and present some recently developed approaches. The book covers multi-object tracking in two and three dimensions. We consider two imaging scenarios involving either single cameras or multiple cameras with overlapping fields of view, and requiring across-time and across-view data association methods. In addition to methods that match new measurements to already established tracks, we describe methods that match trajectory segments, also called tracklets. The book presents a principled application of data association to solve two interesting tasks: first, analyzing the movements of groups of free-flying animals and second, reconstructing the movements of groups of pedestrians. We conclude by discussing exciting directions for future research.
Data Association for Multi-Object Visual Tracking

In the human quest for scientific knowledge, empirical evidence is collected by visual perception. Tracking with computer vision takes on the important role to reveal complex patterns of motion that exist in the world we live in. Multi-object tracking algorithms provide new information on how groups and individual group members move through three-dimensional space. They enable us to study in depth the relationships between individuals in moving groups. These may be interactions of pedestrians on a crowded sidewalk, living cells under a microscope, or bats emerging in large numbers from a cave. Being able to track pedestrians is important for urban planning; analysis of cell interactions supports research on biomaterial design; and the study of bat and bird flight can guide the engineering of aircraft. We were inspired by this multitude of applications to consider the crucial component needed to advance a single-object tracking system to a multi-object tracking system—data association. Data association in the most general sense is the process of matching information about newly observed objects with information that was previously observed about them. This information may be about their identities, positions, or trajectories. Algorithms for data association search for matches that optimize certain match criteria and are subject to physical conditions. They can therefore be formulated as solving a "constrained optimization problem"—the problem of optimizing an objective function of some variables in the presence of constraints on these variables. As such, data association methods have a strong mathematical grounding and are valuable general tools for computer vision researchers. This book serves as a tutorial on data association methods, intended for both students and experts in computer vision. We describe the basic research problems, review the current state of the art, and present some recently developed approaches. The book covers multi-object tracking in two and three dimensions. We consider two imaging scenarios involving either single cameras or multiple cameras with overlapping fields of view, and requiring across-time and across-view data association methods. In addition to methods that match new measurements to already established tracks, we describe methods that match trajectory segments, also called tracklets. The book presents a principled application of data association to solve two interesting tasks: first, analyzing the movements of groups of free-flying animals and second, reconstructing the movements of groups of pedestrians. We conclude by discussing exciting directions for future research.
Artificial Intelligence Applications for Smart Societies

This volume discusses recent advances in Artificial Intelligence (AI) applications in smart, internet-connected societies, highlighting three key focus areas. The first focus is on intelligent sensing applications. This section details the integration of Wireless Sensing Networks (WSN) and the use of intelligent platforms for WSN applications in urban infrastructures, and discusses AI techniques on hardware and software systems such as machine learning, pattern recognition, expert systems, neural networks, genetic algorithms, and intelligent control in transportation and communications systems. The second focus is on AI-based Internet of Things (IoT) systems, which addresses applications in traffic management, medical health, smart homes and energy. Readers will also learn about how AI can extract useful information from Big Data in IoT systems. The third focus is on crowdsourcing (CS) and computing for smart cities. this section discusses how CS via GPS devices, GIS tools, traffic cameras, smart cards, smart phones and road deceleration devices enables citizens to collect and share data to make cities smart, and how these data can be applied to address urban issues including pollution, traffic congestion, public safety and increased energy consumption. This book will of interest to academics, researchers and students studying AI, cloud computing, IoT and crowdsourcing in urban applications.