Data Analytics Peningkatan Performa Algoritma Rekomendasi Collaborative Filtering Menggunakan K Means Clustering


Download Data Analytics Peningkatan Performa Algoritma Rekomendasi Collaborative Filtering Menggunakan K Means Clustering PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Data Analytics Peningkatan Performa Algoritma Rekomendasi Collaborative Filtering Menggunakan K Means Clustering book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Data analytics : peningkatan performa algoritma rekomendasi collaborative filtering menggunakan K-means clustering


Data analytics : peningkatan performa algoritma rekomendasi collaborative filtering menggunakan K-means clustering

Author: Rojasqi Fadilla

language: id

Publisher: Kreatif

Release Date: 2020-09-23


DOWNLOAD





Sistem rekomendasi memainkan peran sangat penting dalam bidang pemasaran di era internet, dan Collaborative Filtering (CF), sebagai metode/algoritma rekomendasi yang populer dan powerfull, telah menjadi perhatian luas dalam berbagai platform aplikasi. Tetapi masalah yang sering di temui dalam sistem rekomendasi ialah spartisy data, sehingga dengan begitu performa/kinerja dari CF menurun. Buku ini berisi penelitian tentang bagaiman mengatasi masalah tersebut dengan pengujian untuk meningkatkan kinerja CF dengan menggabungkan metode Clustering menggunakan K-Means untuk mereduksi di mensi data serta pemilihan kluster yang optimal di pilih menggunakan metode elbow. Penulis berharap dengan terbitnya buku ini dapat memberikan manfaat yang besar bagi pembaca yang sedang membutuhkan.

Introduction to Information Retrieval


Introduction to Information Retrieval

Author: Christopher D. Manning

language: en

Publisher: Cambridge University Press

Release Date: 2008-07-07


DOWNLOAD





Class-tested and coherent, this textbook teaches classical and web information retrieval, including web search and the related areas of text classification and text clustering from basic concepts. It gives an up-to-date treatment of all aspects of the design and implementation of systems for gathering, indexing, and searching documents; methods for evaluating systems; and an introduction to the use of machine learning methods on text collections. All the important ideas are explained using examples and figures, making it perfect for introductory courses in information retrieval for advanced undergraduates and graduate students in computer science. Based on feedback from extensive classroom experience, the book has been carefully structured in order to make teaching more natural and effective. Slides and additional exercises (with solutions for lecturers) are also available through the book's supporting website to help course instructors prepare their lectures.

Introduction to Data Mining


Introduction to Data Mining

Author: Pang-Ning Tan

language: en

Publisher:

Release Date: 2014


DOWNLOAD





Introduction to Data Mining presents fundamental concepts and algorithms for those learning data mining for the first time. Each concept is explored thoroughly and supported with numerous examples. The text requires only a modest background in mathematics. Each major topic is organized into two chapters, beginning with basic concepts that provide necessary background for understanding each data mining technique, followed by more advanced concepts and algorithms. Quotes This book provides a comprehensive coverage of important data mining techniques. Numerous examples are provided to lucidly illustrate the key concepts.