Data Analysis With Python And Pyspark


Download Data Analysis With Python And Pyspark PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Data Analysis With Python And Pyspark book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Data Analysis with Python and PySpark


Data Analysis with Python and PySpark

Author: Jonathan Rioux

language: en

Publisher: Simon and Schuster

Release Date: 2022-04-12


DOWNLOAD





Think big about your data! PySpark brings the powerful Spark big data processing engine to the Python ecosystem, letting you seamlessly scale up your data tasks and create lightning-fast pipelines. In Data Analysis with Python and PySpark you will learn how to: Manage your data as it scales across multiple machines Scale up your data programs with full confidence Read and write data to and from a variety of sources and formats Deal with messy data with PySpark’s data manipulation functionality Discover new data sets and perform exploratory data analysis Build automated data pipelines that transform, summarize, and get insights from data Troubleshoot common PySpark errors Creating reliable long-running jobs Data Analysis with Python and PySpark is your guide to delivering successful Python-driven data projects. Packed with relevant examples and essential techniques, this practical book teaches you to build pipelines for reporting, machine learning, and other data-centric tasks. Quick exercises in every chapter help you practice what you’ve learned, and rapidly start implementing PySpark into your data systems. No previous knowledge of Spark is required. About the technology The Spark data processing engine is an amazing analytics factory: raw data comes in, insight comes out. PySpark wraps Spark’s core engine with a Python-based API. It helps simplify Spark’s steep learning curve and makes this powerful tool available to anyone working in the Python data ecosystem. About the book Data Analysis with Python and PySpark helps you solve the daily challenges of data science with PySpark. You’ll learn how to scale your processing capabilities across multiple machines while ingesting data from any source—whether that’s Hadoop clusters, cloud data storage, or local data files. Once you’ve covered the fundamentals, you’ll explore the full versatility of PySpark by building machine learning pipelines, and blending Python, pandas, and PySpark code. What's inside Organizing your PySpark code Managing your data, no matter the size Scale up your data programs with full confidence Troubleshooting common data pipeline problems Creating reliable long-running jobs About the reader Written for data scientists and data engineers comfortable with Python. About the author As a ML director for a data-driven software company, Jonathan Rioux uses PySpark daily. He teaches the software to data scientists, engineers, and data-savvy business analysts. Table of Contents 1 Introduction PART 1 GET ACQUAINTED: FIRST STEPS IN PYSPARK 2 Your first data program in PySpark 3 Submitting and scaling your first PySpark program 4 Analyzing tabular data with pyspark.sql 5 Data frame gymnastics: Joining and grouping PART 2 GET PROFICIENT: TRANSLATE YOUR IDEAS INTO CODE 6 Multidimensional data frames: Using PySpark with JSON data 7 Bilingual PySpark: Blending Python and SQL code 8 Extending PySpark with Python: RDD and UDFs 9 Big data is just a lot of small data: Using pandas UDFs 10 Your data under a different lens: Window functions 11 Faster PySpark: Understanding Spark’s query planning PART 3 GET CONFIDENT: USING MACHINE LEARNING WITH PYSPARK 12 Setting the stage: Preparing features for machine learning 13 Robust machine learning with ML Pipelines 14 Building custom ML transformers and estimators

Essential PySpark for Scalable Data Analytics


Essential PySpark for Scalable Data Analytics

Author: Sreeram Nudurupati

language: en

Publisher: Packt Publishing Ltd

Release Date: 2021-10-29


DOWNLOAD





Get started with distributed computing using PySpark, a single unified framework to solve end-to-end data analytics at scale Key FeaturesDiscover how to convert huge amounts of raw data into meaningful and actionable insightsUse Spark's unified analytics engine for end-to-end analytics, from data preparation to predictive analyticsPerform data ingestion, cleansing, and integration for ML, data analytics, and data visualizationBook Description Apache Spark is a unified data analytics engine designed to process huge volumes of data quickly and efficiently. PySpark is Apache Spark's Python language API, which offers Python developers an easy-to-use scalable data analytics framework. Essential PySpark for Scalable Data Analytics starts by exploring the distributed computing paradigm and provides a high-level overview of Apache Spark. You'll begin your analytics journey with the data engineering process, learning how to perform data ingestion, cleansing, and integration at scale. This book helps you build real-time analytics pipelines that help you gain insights faster. You'll then discover methods for building cloud-based data lakes, and explore Delta Lake, which brings reliability to data lakes. The book also covers Data Lakehouse, an emerging paradigm, which combines the structure and performance of a data warehouse with the scalability of cloud-based data lakes. Later, you'll perform scalable data science and machine learning tasks using PySpark, such as data preparation, feature engineering, and model training and productionization. Finally, you'll learn ways to scale out standard Python ML libraries along with a new pandas API on top of PySpark called Koalas. By the end of this PySpark book, you'll be able to harness the power of PySpark to solve business problems. What you will learnUnderstand the role of distributed computing in the world of big dataGain an appreciation for Apache Spark as the de facto go-to for big data processingScale out your data analytics process using Apache SparkBuild data pipelines using data lakes, and perform data visualization with PySpark and Spark SQLLeverage the cloud to build truly scalable and real-time data analytics applicationsExplore the applications of data science and scalable machine learning with PySparkIntegrate your clean and curated data with BI and SQL analysis toolsWho this book is for This book is for practicing data engineers, data scientists, data analysts, and data enthusiasts who are already using data analytics to explore distributed and scalable data analytics. Basic to intermediate knowledge of the disciplines of data engineering, data science, and SQL analytics is expected. General proficiency in using any programming language, especially Python, and working knowledge of performing data analytics using frameworks such as pandas and SQL will help you to get the most out of this book.

Data Analytics with Spark Using Python


Data Analytics with Spark Using Python

Author: Jeffrey Aven

language: en

Publisher: Addison-Wesley Professional

Release Date: 2018-06-18


DOWNLOAD





Solve Data Analytics Problems with Spark, PySpark, and Related Open Source Tools Spark is at the heart of today’s Big Data revolution, helping data professionals supercharge efficiency and performance in a wide range of data processing and analytics tasks. In this guide, Big Data expert Jeffrey Aven covers all you need to know to leverage Spark, together with its extensions, subprojects, and wider ecosystem. Aven combines a language-agnostic introduction to foundational Spark concepts with extensive programming examples utilizing the popular and intuitive PySpark development environment. This guide’s focus on Python makes it widely accessible to large audiences of data professionals, analysts, and developers—even those with little Hadoop or Spark experience. Aven’s broad coverage ranges from basic to advanced Spark programming, and Spark SQL to machine learning. You’ll learn how to efficiently manage all forms of data with Spark: streaming, structured, semi-structured, and unstructured. Throughout, concise topic overviews quickly get you up to speed, and extensive hands-on exercises prepare you to solve real problems. Coverage includes: • Understand Spark’s evolving role in the Big Data and Hadoop ecosystems • Create Spark clusters using various deployment modes • Control and optimize the operation of Spark clusters and applications • Master Spark Core RDD API programming techniques • Extend, accelerate, and optimize Spark routines with advanced API platform constructs, including shared variables, RDD storage, and partitioning • Efficiently integrate Spark with both SQL and nonrelational data stores • Perform stream processing and messaging with Spark Streaming and Apache Kafka • Implement predictive modeling with SparkR and Spark MLlib