Data Analysis Techniques For Physical Scientists


Download Data Analysis Techniques For Physical Scientists PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Data Analysis Techniques For Physical Scientists book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Data Analysis Techniques for Physical Scientists


Data Analysis Techniques for Physical Scientists

Author: Claude A. Pruneau

language: en

Publisher: Cambridge University Press

Release Date: 2017-10-05


DOWNLOAD





A comprehensive guide to data analysis techniques for the physical sciences including probability, statistics, data reconstruction, data correction and Monte Carlo methods. This book provides a valuable resource for advanced undergraduate and graduate students, as well as practitioners in the fields of experimental particle physics, nuclear physics and astrophysics.

Data Analysis Techniques for Physical Scientists


Data Analysis Techniques for Physical Scientists

Author: Claude A. Pruneau

language: en

Publisher:

Release Date: 2017


DOWNLOAD





A comprehensive guide to data analysis techniques for physical scientists, providing a valuable resource for advanced undergraduate and graduate students, as well as seasoned researchers. The book begins with an extensive discussion of the foundational concepts and methods of probability and statistics under both the frequentist and Bayesian interpretations of probability. It next presents basic concepts and techniques used for measurements of particle production cross-sections, correlation functions, and particle identification. Much attention is devoted to notions of statistical and systematic errors, beginning with intuitive discussions and progressively introducing the more formal concepts of confidence intervals, credible range, and hypothesis testing. The book also includes an in-depth discussion of the methods used to unfold or correct data for instrumental effects associated with measurement and process noise as well as particle and event losses, before ending with a presentation of elementary Monte Carlo techniques.

Data Analysis for Scientists and Engineers


Data Analysis for Scientists and Engineers

Author: Edward L. Robinson

language: en

Publisher: Princeton University Press

Release Date: 2016-09-20


DOWNLOAD





Data Analysis for Scientists and Engineers is a modern, graduate-level text on data analysis techniques for physical science and engineering students as well as working scientists and engineers. Edward Robinson emphasizes the principles behind various techniques so that practitioners can adapt them to their own problems, or develop new techniques when necessary. Robinson divides the book into three sections. The first section covers basic concepts in probability and includes a chapter on Monte Carlo methods with an extended discussion of Markov chain Monte Carlo sampling. The second section introduces statistics and then develops tools for fitting models to data, comparing and contrasting techniques from both frequentist and Bayesian perspectives. The final section is devoted to methods for analyzing sequences of data, such as correlation functions, periodograms, and image reconstruction. While it goes beyond elementary statistics, the text is self-contained and accessible to readers from a wide variety of backgrounds. Specialized mathematical topics are included in an appendix. Based on a graduate course on data analysis that the author has taught for many years, and couched in the looser, workaday language of scientists and engineers who wrestle directly with data, this book is ideal for courses on data analysis and a valuable resource for students, instructors, and practitioners in the physical sciences and engineering. In-depth discussion of data analysis for scientists and engineers Coverage of both frequentist and Bayesian approaches to data analysis Extensive look at analysis techniques for time-series data and images Detailed exploration of linear and nonlinear modeling of data Emphasis on error analysis Instructor's manual (available only to professors)