Cuda For Engineers

Download Cuda For Engineers PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Cuda For Engineers book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
CUDA for Engineers

Author: Duane Storti
language: en
Publisher: Addison-Wesley Professional
Release Date: 2015-11-02
CUDA for Engineers gives you direct, hands-on engagement with personal, high-performance parallel computing, enabling you to do computations on a gaming-level PC that would have required a supercomputer just a few years ago. The authors introduce the essentials of CUDA C programming clearly and concisely, quickly guiding you from running sample programs to building your own code. Throughout, you’ll learn from complete examples you can build, run, and modify, complemented by additional projects that deepen your understanding. All projects are fully developed, with detailed building instructions for all major platforms. Ideal for any scientist, engineer, or student with at least introductory programming experience, this guide assumes no specialized background in GPU-based or parallel computing. In an appendix, the authors also present a refresher on C programming for those who need it. Coverage includes Preparing your computer to run CUDA programs Understanding CUDA’s parallelism model and C extensions Transferring data between CPU and GPU Managing timing, profiling, error handling, and debugging Creating 2D grids Interoperating with OpenGL to provide real-time user interactivity Performing basic simulations with differential equations Using stencils to manage related computations across threads Exploiting CUDA’s shared memory capability to enhance performance Interacting with 3D data: slicing, volume rendering, and ray casting Using CUDA libraries Finding more CUDA resources and code Realistic example applications include Visualizing functions in 2D and 3D Solving differential equations while changing initial or boundary conditions Viewing/processing images or image stacks Computing inner products and centroids Solving systems of linear algebraic equations Monte-Carlo computations
CUDA Fortran for Scientists and Engineers

CUDA Fortran for Scientists and Engineers: Best Practices for Efficient CUDA Fortran Programming shows how high-performance application developers can leverage the power of GPUs using Fortran, the familiar language of scientific computing and supercomputer performance benchmarking. The authors presume no prior parallel computing experience, and cover the basics along with best practices for efficient GPU computing using CUDA Fortran. In order to add CUDA Fortran to existing Fortran codes, they explain how to understand the target GPU architecture, identify computationally-intensive parts of the code, and modify the code to manage the data and parallelism and optimize performance – all in Fortran, without having to rewrite in another language. Each concept is illustrated with actual examples so you can immediately evaluate the performance of your code in comparison. This second edition provides much needed updates on how to efficiently program GPUs in CUDA Fortran. It can be used either as a tutorial on GPU programming in CUDA Fortran as well as a reference text. - Presents optimization strategies for current hardware, including Hopper generation GPUs - Includes discussions of new language and hardware features, including managed memory, tensor cores, shuffle instructions, new multi-GPU paradigms - Offers resources and strategies for porting large codes to GPUs, including language features as well as library use