Course In Analysis A Vol Ii Differentiation And Integration Of Functions Of Several Variables Vector Calculus

Download Course In Analysis A Vol Ii Differentiation And Integration Of Functions Of Several Variables Vector Calculus PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Course In Analysis A Vol Ii Differentiation And Integration Of Functions Of Several Variables Vector Calculus book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Course In Analysis, A - Vol. Ii: Differentiation And Integration Of Functions Of Several Variables, Vector Calculus

Author: Niels Jacob
language: en
Publisher: World Scientific Publishing Company
Release Date: 2016-06-29
'The authors give many examples, illustrations and exercises to help students digest the theory and they employ use of clear and neat notation throughout. I really appreciate their selection of exercises, since many of the problems develop simple techniques to be used later in the book or make connections of analysis with other parts of mathematics. There are also solutions to all of the exercises in the back of the book. As in the first volume there are some real gems in volume II. A Course in Analysis seems to be full of these little gems where the authors use the material or ask the readers to use the material to obtain results or examples that the reader will certainly see again in another context later in their studies of mathematics. Generally, the quality of exposition in both of the first two volumes is very high. I recommend these books.' (See Full Review)MAA ReviewsThis is the second volume of 'A Course in Analysis' and it is devoted to the study of mappings between subsets of Euclidean spaces. The metric, hence the topological structure is discussed as well as the continuity of mappings. This is followed by introducing partial derivatives of real-valued functions and the differential of mappings. Many chapters deal with applications, in particular to geometry (parametric curves and surfaces, convexity), but topics such as extreme values and Lagrange multipliers, or curvilinear coordinates are considered too. On the more abstract side results such as the Stone-Weierstrass theorem or the Arzela-Ascoli theorem are proved in detail. The first part ends with a rigorous treatment of line integrals.The second part handles iterated and volume integrals for real-valued functions. Here we develop the Riemann (-Darboux-Jordan) theory. A whole chapter is devoted to boundaries and Jordan measurability of domains. We also handle in detail improper integrals and give some of their applications.The final part of this volume takes up a first discussion of vector calculus. Here we present a working mathematician's version of Green's, Gauss' and Stokes' theorem. Again some emphasis is given to applications, for example to the study of partial differential equations. At the same time we prepare the student to understand why these theorems and related objects such as surface integrals demand a much more advanced theory which we will develop in later volumes.This volume offers more than 260 problems solved in complete detail which should be of great benefit to every serious student.
Course In Analysis, A - Vol V: Functional Analysis, Some Operator Theory, Theory Of Distributions

The book is an advanced textbook and a reference text in functional analysis in the wide sense. It provides advanced undergraduate and graduate students with a coherent introduction to the field, i.e. the basic principles, and leads them to more demanding topics such as the spectral theorem, Choquet theory, interpolation theory, analysis of operator semigroups, Hilbert-Schmidt operators and Hille-Tamarkin operators, topological vector spaces and distribution theory, fundamental solutions, or the Schwartz kernel theorem.All topics are treated in great detail and the text provided is suitable for self-studying the subject. This is enhanced by more than 270 problems solved in detail. At the same time the book is a reference text for any working mathematician needing results from functional analysis, operator theory or the theory of distributions.Embedded as Volume V in the Course of Analysis, readers will have a self-contained treatment of a key area in modern mathematics. A detailed list of references invites to further studies.
Introduction to Analysis in Several Variables: Advanced Calculus

Author: Michael E. Taylor
language: en
Publisher: American Mathematical Soc.
Release Date: 2020-07-27
This text was produced for the second part of a two-part sequence on advanced calculus, whose aim is to provide a firm logical foundation for analysis. The first part treats analysis in one variable, and the text at hand treats analysis in several variables. After a review of topics from one-variable analysis and linear algebra, the text treats in succession multivariable differential calculus, including systems of differential equations, and multivariable integral calculus. It builds on this to develop calculus on surfaces in Euclidean space and also on manifolds. It introduces differential forms and establishes a general Stokes formula. It describes various applications of Stokes formula, from harmonic functions to degree theory. The text then studies the differential geometry of surfaces, including geodesics and curvature, and makes contact with degree theory, via the Gauss–Bonnet theorem. The text also takes up Fourier analysis, and bridges this with results on surfaces, via Fourier analysis on spheres and on compact matrix groups.