Core Chasing Algorithms For The Eigenvalue Problem

Download Core Chasing Algorithms For The Eigenvalue Problem PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Core Chasing Algorithms For The Eigenvalue Problem book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Core-Chasing Algorithms for the Eigenvalue Problem

Eigenvalue computations are ubiquitous in science and engineering. John Francis?s implicitly shifted QR algorithm has been the method of choice for small to medium sized eigenvalue problems since its invention in 1959. This book presents a new view of this classical algorithm. While Francis?s original procedure chases bulges, the new version chases core transformations, which allows the development of fast algorithms for eigenvalue problems with a variety of special structures. This also leads to a fast and backward stable algorithm for computing the roots of a polynomial by solving the companion matrix eigenvalue problem. The authors received a SIAM Outstanding Paper prize for this work. This book will be of interest to researchers in numerical linear algebra and their students.
Pole-Swapping Algorithms for the Eigenvalue Problem

Matrix eigenvalue problems arise in a wide variety of fields in science and engineering, so it is important to have reliable and efficient methods for solving them. Of the methods devised, bulge-chasing algorithms, such as the famous QR and QZ algorithms, are the most important. This book focuses on pole-swapping algorithms, a new class of methods that are generalizations of bulge-chasing algorithms and a bit faster and more accurate owing to their inherent flexibility. The pole-swapping theory developed by the authors sheds light on the functioning of the whole class of algorithms, including QR and QZ. Pole-Swapping Algorithms for the Eigenvalue Problem is the only book on the topic. It describes the state of the art on eigenvalue methods and provides an improved understanding and explanation of why these important algorithms work. This book is for researchers and students in the field of matrix computations, software developers, and anyone in academia or industry who needs to understand how to solve eigenvalue problems, which are ubiquitous in science and engineering.
Riemann Problems and Jupyter Solutions

This book addresses an important class of mathematical problems (the Riemann problem) for first-order hyperbolic partial differential equations (PDEs), which arise when modeling wave propagation in applications such as fluid dynamics, traffic flow, acoustics, and elasticity. The solution of the Riemann problem captures essential information about these models and is the key ingredient in modern numerical methods for their solution. This book covers the fundamental ideas related to classical Riemann solutions, including their special structure and the types of waves that arise, as well as the ideas behind fast approximate solvers for the Riemann problem. The emphasis is on the general ideas, but each chapter delves into a particular application. Riemann Problems and Jupyter Solutions is available in electronic form as a collection of Jupyter notebooks that contain executable computer code and interactive figures and animations, allowing readers to grasp how the concepts presented are affected by important parameters and to experiment by varying those parameters themselves. The only interactive book focused entirely on the Riemann problem, it develops each concept in the context of a specific physical application, helping readers apply physical intuition in learning mathematical concepts. Graduate students and researchers working in the analysis and/or numerical solution of hyperbolic PDEs will find this book of interest. This includes mathematicians, as well as scientists and engineers, working on wave propagation problems. Educators interested in developing instructional materials using Jupyter notebooks will also find this book useful. The book is appropriate for courses in Numerical Methods for Hyperbolic PDEs and Analysis of Hyperbolic PDEs, and it can be a great supplement for courses in computational fluid dynamics, acoustics, and gas dynamics.