Coordination And Control Of A Multiple Spacecraft Using Convex Optimization Techniques

Download Coordination And Control Of A Multiple Spacecraft Using Convex Optimization Techniques PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Coordination And Control Of A Multiple Spacecraft Using Convex Optimization Techniques book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Coordination and Control of Multiple Spacecraft Using Convex Optimization Techniques

Formation flying of multiple spacecraft is an enabling technology for many future space science missions. These future missions will, for example, use the highly coordinated, distributed array of vehicles for earth mapping interferometers and synthetic aperture radar. This thesis presents coordination and control algorithms designed for a fleet of spacecraft. These algorithms are embedded in a hierarchical fleet archi- tecture that includes a high-level coordinator for the fleet maneuvers used to form, re-size, or re-target the formation configuration and low-level controllers to generate and implement the individual control inputs for each vehicle. The trajectory and control problems are posed as linear programming (LP) optimizations to solve for the minimum fuel maneuvers. The combined result of the high-level coordination and low-level controllers is a very flexible optimization framework that can be used off-line to analyze aspects of a mission design and in real-time as part of an on-board autonomous formation flying control system. This thesis also investigates several crit- ical issues associated with the implementation of this formation flying approach. In particular, modifications to the LP algorithms are presented to: include robustness to sensor noise, include actuator constraints, ensure that the optimization solutions are always feasible, and reduce the LP solution times. Furthermore, the dynamics for the control problem are analyzed in terms of two key issues: 1) what dynamics model should be used to specify the desired state to maintain a passive aperture; and 2) what dynamics model should be used in the LP to represent the motion about this state. Several linearized models of the relative dynamics are considered in this analysis, including Hill's equations for circular orbits, modified linear dynamics that partially account for the J2 effects, and Lawden's equations for eccentric orbits.
Advanced Trajectory Optimization, Guidance and Control Strategies for Aerospace Vehicles

This book focuses on the design and application of advanced trajectory optimization and guidance and control (G&C) techniques for aerospace vehicles. Part I of the book focuses on the introduction of constrained aerospace vehicle trajectory optimization problems, with particular emphasis on the design of high-fidelity trajectory optimization methods, heuristic optimization-based strategies, and fast convexification-based algorithms. In Part II, various optimization theory/artificial intelligence (AI)-based methods are constructed and presented, including dynamic programming-based methods, model predictive control-based methods, and deep neural network-based algorithms. Key aspects of the application of these approaches, such as their main advantages and inherent challenges, are detailed and discussed. Some practical implementation considerations are then summarized, together with a number of future research topics. The comprehensive and systematic treatment of practical issues in aerospace trajectory optimization and guidance and control problems is one of the main features of the book, which is particularly suitable for readers interested in learning practical solutions in aerospace trajectory optimization and guidance and control. The book is useful to researchers, engineers, and graduate students in the fields of G&C systems, engineering optimization, applied optimal control theory, etc.