Cooperative Event Based Control Of Mobile Agents


Download Cooperative Event Based Control Of Mobile Agents PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Cooperative Event Based Control Of Mobile Agents book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Cooperative Event-Based Control of Mobile Agents


Cooperative Event-Based Control of Mobile Agents

Author: Michael Schwung

language: en

Publisher: Logos Verlag Berlin GmbH

Release Date: 2022-06-01


DOWNLOAD





This thesis proposes a method that plans trajectories for autonomous agents to enable them to fulfil different tasks while ensuring the collision-free movement. The agents are locally controlled and connected over an unreliable communication network that may induce packet losses and transmission delays. Further sensors e.g. for a distance measurement are not used and communication should only be invoked if it is necessary to avoid a collision. The basic problem occurs for two agents. The first agent can change its trajectory at any time without regard to the second agent, which has to ensure the collision avoidance. To this aim it adapts its trajectory based only on local data and communicated information about the current and future movement of the first agent. A control unit for the second agent is introduced that has to execute four tasks to ensure the control aims: 1. Estimation of the current network properties. 2. Prediction of the movement of the stand-on agent. 3. Invocation of communication whenever the local data becomes too uncertain. 4. Planning of collision avoiding trajectories. The main result of the thesis is a novel control method for mobile agents that solves the four tasks leading to a proven collision avoidance. The method consists of a delay estimator, a prediction unit, an event generator and a trajectory planning unit. The method can be used for different types of agents (e.g. UAVs or cars) with only slight modifications. The proposed method is tested and evaluated through simulations and experiments with both, two quadrotors and two nonholonomic robots.

Cooperative Control of Multi-Agent Systems


Cooperative Control of Multi-Agent Systems

Author: Yue Wang

language: en

Publisher: John Wiley & Sons

Release Date: 2017-03-20


DOWNLOAD





A comprehensive review of the state of the art in the control of multi-agent systems theory and applications The superiority of multi-agent systems over single agents for the control of unmanned air, water and ground vehicles has been clearly demonstrated in a wide range of application areas. Their large-scale spatial distribution, robustness, high scalability and low cost enable multi-agent systems to achieve tasks that could not successfully be performed by even the most sophisticated single agent systems. Cooperative Control of Multi-Agent Systems: Theory and Applications provides a wide-ranging review of the latest developments in the cooperative control of multi-agent systems theory and applications. The applications described are mainly in the areas of unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs). Throughout, the authors link basic theory to multi-agent cooperative control practice — illustrated within the context of highly-realistic scenarios of high-level missions — without losing site of the mathematical background needed to provide performance guarantees under general working conditions. Many of the problems and solutions considered involve combinations of both types of vehicles. Topics explored include target assignment, target tracking, consensus, stochastic game theory-based framework, event-triggered control, topology design and identification, coordination under uncertainty and coverage control. Establishes a bridge between fundamental cooperative control theory and specific problems of interest in a wide range of applications areas Includes example applications from the fields of space exploration, radiation shielding, site clearance, tracking/classification, surveillance, search-and-rescue and more Features detailed presentations of specific algorithms and application frameworks with relevant commercial and military applications Provides a comprehensive look at the latest developments in this rapidly evolving field, while offering informed speculation on future directions for collective control systems The use of multi-agent system technologies in both everyday commercial use and national defense is certain to increase tremendously in the years ahead, making this book a valuable resource for researchers, engineers, and applied mathematicians working in systems and controls, as well as advanced undergraduates and graduate students interested in those areas.

Cooperative Control of Networked Vehicles


Cooperative Control of Networked Vehicles

Author: Alexander Schwab

language: en

Publisher: Logos Verlag Berlin GmbH

Release Date: 2022-08-29


DOWNLOAD





This thesis concerns the cooperative control of networked vehicles. Autonomous driving is a topic that is currently being discussed with great interest from researchers, vehicle manufacturers and the corresponding media. Future autonomous vehicles should bring the passengers to their desired destination while improving both safety and efficiency compared to current human-driven vehicles. The inherent problem of all vehicle coordination tasks is to guarantee collision avoidance in every situation. To this end, autonomous vehicles have to share information with each other in order to perform traffic manoeuvres that require the cooperation of multiple vehicles. The fundamental problem of vehicle platooning is studied extensively which describes the task of arranging a set of vehicles so that they drive with a common velocity and a prescribed distance. Local design objectives are derived that have to be satisfied by the vehicle controllers. In particular, it is shown that the vehicles have to be externally positive to achieve collision avoidance. As an abstraction from real traffic scenarios, swarms of networked vehicles are considered. The main difference between swarming and traffic problems is that a communication structure that has been appropriate in the beginning might become unsuited for the control task due to the relative movement of the vehicles. To solve this problem, this thesis proposes to use the Delaunay triangulation as a switching communication structure.