Cooperative Dynamics In Complex Physical Systems

Download Cooperative Dynamics In Complex Physical Systems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Cooperative Dynamics In Complex Physical Systems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Cooperative Dynamics in Complex Physical Systems

Author: Hajime Takayama
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-12-06
Many novel cooperative phenomena found in a variety of systems studied by scientists can be treated using the uniting principles of synergetics. Examples are frustrated and random systems, polymers, spin glasses, neural networks, chemical and biological systems, and fluids. In this book attention is focused on two main problems. First, how local, topological constraints (frustrations) can cause macroscopic cooperative behavior: related ideas initially developed for spin glasses are shown to play key roles also for optimization and the modeling of neural networks. Second, the dynamical constraints that arise from the nonlinear dynamics of the systems: the discussion covers turbulence in fluids, pattern formation, and conventional 1/f noise. The volume will be of interest to anyone wishing to understand the current development of work on complex systems, which is presently one of the most challenging subjects in statistical and condensed matter physics.
Cooperative Dynamics in Complex Physical Systems

Many novel cooperative phenomena found in a variety of systems studied by scientists can be treated using the uniting principles of synergetics. Examples are frustrated and random systems, polymers, spin glasses, neural networks, chemical and biological systems, and fluids. In this book attention is focused on two main problems. First, how local, topological constraints (frustrations) can cause macroscopic cooperative behavior: related ideas initially developed for spin glasses are shown to play key roles also for optimization and the modeling of neural networks. Second, the dynamical constraints that arise from the nonlinear dynamics of the systems: the discussion covers turbulence in fluids, pattern formation, and conventional 1/f noise. The volume will be of interest to anyone wishing to understand the current development of work on complex systems, which is presently one of the most challenging subjects in statistical and condensed matter physics.
Dynamics and Patterns in Complex Fluids

Author: Akira Onuki
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-12-06
The fourth Nishinomiya-Yukawa Memorial Symposium, devoted to the topic of dynamics and patterns in complex fluids, was held on October 26 and 27, 1989, in Nishinomiya City, Japan, where ten invited speakers gave their lectures. A one-day meeting, comprising short talks and poster sessions, was then held on the same topic on October 28 at the Research Institute for Fundamental Physics, Kyoto University. The present volume contains the 10 invited papers and 38 contributed papers presented at these two meetings. The symposium was sponsored by Nishinomiya City, where Prof. Hideki Yukawa once lived and where he wrote the celebrated paper describing the work that was later honored by a Nobel prize. The topic of the fourth symposium was chosen from one of the most vigorously evolving and highly interdisciplinary fields in condensed matter physics. The field of complex fluids is very diverse and still in its infancy and, as a result, the definition of a complex fluid varies greatly from one researcher to the next. One of the objectives of the symposium was to clarify its definition by explicitly posing a number of potentially rich problems waiting to be explored. Indeed, experimentalists are disclosing a variety of intriguing dynamical phenomena in complex systems such as polymers, liquid crystals, gels, colloids, and surfactant systems. We, the organizers, hope that the symposium will contribute to the increasing importance of the field in the coming years.