Convexity Methods In Hamiltonian Mechanics

Download Convexity Methods In Hamiltonian Mechanics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Convexity Methods In Hamiltonian Mechanics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Convexity Methods in Hamiltonian Mechanics

Author: Ivar Ekeland
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-12-06
In the case of completely integrable systems, periodic solutions are found by inspection. For nonintegrable systems, such as the three-body problem in celestial mechanics, they are found by perturbation theory: there is a small parameter € in the problem, the mass of the perturbing body for instance, and for € = 0 the system becomes completely integrable. One then tries to show that its periodic solutions will subsist for € -# 0 small enough. Poincare also introduced global methods, relying on the topological properties of the flow, and the fact that it preserves the 2-form L~=l dPi 1\ dqi' The most celebrated result he obtained in this direction is his last geometric theorem, which states that an area-preserving map of the annulus which rotates the inner circle and the outer circle in opposite directions must have two fixed points. And now another ancient theme appear: the least action principle. It states that the periodic solutions of a Hamiltonian system are extremals of a suitable integral over closed curves. In other words, the problem is variational. This fact was known to Fermat, and Maupertuis put it in the Hamiltonian formalism. In spite of its great aesthetic appeal, the least action principle has had little impact in Hamiltonian mechanics. There is, of course, one exception, Emmy Noether's theorem, which relates integrals ofthe motion to symmetries of the equations. But until recently, no periodic solution had ever been found by variational methods.
Symplectic Invariants and Hamiltonian Dynamics

The discoveries of the past decade have opened new perspectives for the old field of Hamiltonian systems and led to the creation of a new field: symplectic topology. Surprising rigidity phenomena demonstrate that the nature of symplectic map pings is very different from that of volume preserving mappings which raised new questions, many of them still unanswered. On the other hand, due to the analysis of an old variational principle in classical mechanics, global periodic phenomena in Hamiltonian systems have been established. As it turns out, these seemingly differ ent phenomena are mysteriously related. One of the links is a class of symplectic invariants, called symplectic capacities. These invariants are the main theme of this book which grew out of lectures given by the authors at Rutgers University, the RUB Bochum and at the ETH Zurich (1991) and also at the Borel Seminar in Bern 1992. Since the lectures did not require any previous knowledge, only a few and rather elementary topics were selected and proved in detail. Moreover, our se lection has been prompted by a single principle: the action principle of mechanics. The action functional for loops in the phase space, given by 1 Fh) = J pdq -J H(t, 'Y(t)) dt , 'Y 0 differs from the old Hamiltonian principle in the configuration space defined by a Lagrangian. The critical points of F are those loops 'Y which solve the Hamiltonian equations associated with the Hamiltonian H and hence are the periodic orbits.
Critical Point Theory for Lagrangian Systems

Author: Marco Mazzucchelli
language: en
Publisher: Springer Science & Business Media
Release Date: 2011-11-16
Lagrangian systems constitute a very important and old class in dynamics. Their origin dates back to the end of the eighteenth century, with Joseph-Louis Lagrange’s reformulation of classical mechanics. The main feature of Lagrangian dynamics is its variational flavor: orbits are extremal points of an action functional. The development of critical point theory in the twentieth century provided a powerful machinery to investigate existence and multiplicity questions for orbits of Lagrangian systems. This monograph gives a modern account of the application of critical point theory, and more specifically Morse theory, to Lagrangian dynamics, with particular emphasis toward existence and multiplicity of periodic orbits of non-autonomous and time-periodic systems.