Convex Sets


Download Convex Sets PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Convex Sets book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Convex Sets and Their Applications


Convex Sets and Their Applications

Author: Steven R. Lay

language: en

Publisher: Courier Corporation

Release Date: 2007-01-01


DOWNLOAD





Suitable for advanced undergraduates and graduate students, this text introduces the broad scope of convexity. It leads students to open questions and unsolved problems, and it highlights diverse applications. Author Steven R. Lay, Professor of Mathematics at Lee University in Tennessee, reinforces his teachings with numerous examples, plus exercises with hints and answers. The first three chapters form the foundation for all that follows, starting with a review of the fundamentals of linear algebra and topology. They also survey the development and applications of relationships between hyperplanes and convex sets. Subsequent chapters are relatively self-contained, each focusing on a particular aspect or application of convex sets. Topics include characterizations of convex sets, polytopes, duality, optimization, and convex functions. Hints, solutions, and references for the exercises appear at the back of the book.

Pairs of Compact Convex Sets


Pairs of Compact Convex Sets

Author: Diethard Ernst Pallaschke

language: en

Publisher: Springer Science & Business Media

Release Date: 2013-04-17


DOWNLOAD





The book is devoted to the theory of pairs of compact convex sets and in particular to the problem of finding different types of minimal representants of a pair of nonempty compact convex subsets of a locally convex vector space in the sense of the Rådström-Hörmander Theory. Minimal pairs of compact convex sets arise naturally in different fields of mathematics, as for instance in non-smooth analysis, set-valued analysis and in the field of combinatorial convexity. In the first three chapters of the book the basic facts about convexity, mixed volumes and the Rådström-Hörmander lattice are presented. Then, a comprehensive theory on inclusion-minimal representants of pairs of compact convex sets is given. Special attention is given to the two-dimensional case, where the minimal pairs are uniquely determined up to translations. This fact is not true in higher dimensional spaces and leads to a beautiful theory on the mutual interactions between minimality under constraints, separation and decomposition of convex sets, convexificators and invariants of minimal pairs.

Convex Optimization


Convex Optimization

Author: Stephen P. Boyd

language: en

Publisher: Cambridge University Press

Release Date: 2004-03-08


DOWNLOAD





Convex optimization problems arise frequently in many different fields. This book provides a comprehensive introduction to the subject, and shows in detail how such problems can be solved numerically with great efficiency. The book begins with the basic elements of convex sets and functions, and then describes various classes of convex optimization problems. Duality and approximation techniques are then covered, as are statistical estimation techniques. Various geometrical problems are then presented, and there is detailed discussion of unconstrained and constrained minimization problems, and interior-point methods. The focus of the book is on recognizing convex optimization problems and then finding the most appropriate technique for solving them. It contains many worked examples and homework exercises and will appeal to students, researchers and practitioners in fields such as engineering, computer science, mathematics, statistics, finance and economics.