Convex Analysis And Optimization Unimore


Download Convex Analysis And Optimization Unimore PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Convex Analysis And Optimization Unimore book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Advances in Convex Analysis and Global Optimization


Advances in Convex Analysis and Global Optimization

Author: Nicolas Hadjisavvas

language: en

Publisher: Springer Science & Business Media

Release Date: 2013-12-01


DOWNLOAD





There has been much recent progress in global optimization algo rithms for nonconvex continuous and discrete problems from both a theoretical and a practical perspective. Convex analysis plays a fun damental role in the analysis and development of global optimization algorithms. This is due essentially to the fact that virtually all noncon vex optimization problems can be described using differences of convex functions and differences of convex sets. A conference on Convex Analysis and Global Optimization was held during June 5 -9, 2000 at Pythagorion, Samos, Greece. The conference was honoring the memory of C. Caratheodory (1873-1950) and was en dorsed by the Mathematical Programming Society (MPS) and by the Society for Industrial and Applied Mathematics (SIAM) Activity Group in Optimization. The conference was sponsored by the European Union (through the EPEAEK program), the Department of Mathematics of the Aegean University and the Center for Applied Optimization of the University of Florida, by the General Secretariat of Research and Tech nology of Greece, by the Ministry of Education of Greece, and several local Greek government agencies and companies. This volume contains a selective collection of refereed papers based on invited and contribut ing talks presented at this conference. The two themes of convexity and global optimization pervade this book. The conference provided a forum for researchers working on different aspects of convexity and global opti mization to present their recent discoveries, and to interact with people working on complementary aspects of mathematical programming.

Constrained Optimization and Image Space Analysis


Constrained Optimization and Image Space Analysis

Author: Franco Giannessi

language: en

Publisher: Springer Science & Business Media

Release Date: 2006-10-27


DOWNLOAD





Over the last twenty years, Professor Franco Giannessi, a highly respected researcher, has been working on an approach to optimization theory based on image space analysis. His theory has been elaborated by many other researchers in a wealth of papers. Constrained Optimization and Image Space Analysis unites his results and presents optimization theory and variational inequalities in their light. It presents a new approach to the theory of constrained extremum problems, including Mathematical Programming, Calculus of Variations and Optimal Control Problems. Such an approach unifies the several branches: Optimality Conditions, Duality, Penalizations, Vector Problems, Variational Inequalities and Complementarity Problems. The applications benefit from a unified theory.

Convex Analysis and Optimization


Convex Analysis and Optimization

Author: Dimitri Bertsekas

language: en

Publisher: Athena Scientific

Release Date: 2003-03-01


DOWNLOAD





A uniquely pedagogical, insightful, and rigorous treatment of the analytical/geometrical foundations of optimization. The book provides a comprehensive development of convexity theory, and its rich applications in optimization, including duality, minimax/saddle point theory, Lagrange multipliers, and Lagrangian relaxation/nondifferentiable optimization. It is an excellent supplement to several of our books: Convex Optimization Theory (Athena Scientific, 2009), Convex Optimization Algorithms (Athena Scientific, 2015), Nonlinear Programming (Athena Scientific, 2016), Network Optimization (Athena Scientific, 1998), and Introduction to Linear Optimization (Athena Scientific, 1997). Aside from a thorough account of convex analysis and optimization, the book aims to restructure the theory of the subject, by introducing several novel unifying lines of analysis, including: 1) A unified development of minimax theory and constrained optimization duality as special cases of duality between two simple geometrical problems. 2) A unified development of conditions for existence of solutions of convex optimization problems, conditions for the minimax equality to hold, and conditions for the absence of a duality gap in constrained optimization. 3) A unification of the major constraint qualifications allowing the use of Lagrange multipliers for nonconvex constrained optimization, using the notion of constraint pseudonormality and an enhanced form of the Fritz John necessary optimality conditions. Among its features the book: a) Develops rigorously and comprehensively the theory of convex sets and functions, in the classical tradition of Fenchel and Rockafellar b) Provides a geometric, highly visual treatment of convex and nonconvex optimization problems, including existence of solutions, optimality conditions, Lagrange multipliers, and duality c) Includes an insightful and comprehensive presentation of minimax theory and zero sum games, and its connection with duality d) Describes dual optimization, the associated computational methods, including the novel incremental subgradient methods, and applications in linear, quadratic, and integer programming e) Contains many examples, illustrations, and exercises with complete solutions (about 200 pages) posted at the publisher's web site http://www.athenasc.com/convexity.html