Convex Analysis And Global Optimization


Download Convex Analysis And Global Optimization PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Convex Analysis And Global Optimization book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Convex Analysis and Global Optimization


Convex Analysis and Global Optimization

Author: Hoang Tuy

language: en

Publisher: Springer Science & Business Media

Release Date: 1998-01-31


DOWNLOAD





Due to the general complementary convex structure underlying most nonconvex optimization problems encountered in applications, convex analysis plays an essential role in the development of global optimization methods. This book develops a coherent and rigorous theory of deterministic global optimization from this point of view. Part I constitutes an introduction to convex analysis, with an emphasis on concepts, properties and results particularly needed for global optimization, including those pertaining to the complementary convex structure. Part II presents the foundation and application of global search principles such as partitioning and cutting, outer and inner approximation, and decomposition to general global optimization problems and to problems with a low-rank nonconvex structure as well as quadratic problems. Much new material is offered, aside from a rigorous mathematical development. Audience: The book is written as a text for graduate students in engineering, mathematics, operations research, computer science and other disciplines dealing with optimization theory. It is also addressed to all scientists in various fields who are interested in mathematical optimization.

Advances in Convex Analysis and Global Optimization


Advances in Convex Analysis and Global Optimization

Author: Nicolas Hadjisavvas

language: en

Publisher: Springer Science & Business Media

Release Date: 2013-12-01


DOWNLOAD





There has been much recent progress in global optimization algo rithms for nonconvex continuous and discrete problems from both a theoretical and a practical perspective. Convex analysis plays a fun damental role in the analysis and development of global optimization algorithms. This is due essentially to the fact that virtually all noncon vex optimization problems can be described using differences of convex functions and differences of convex sets. A conference on Convex Analysis and Global Optimization was held during June 5 -9, 2000 at Pythagorion, Samos, Greece. The conference was honoring the memory of C. Caratheodory (1873-1950) and was en dorsed by the Mathematical Programming Society (MPS) and by the Society for Industrial and Applied Mathematics (SIAM) Activity Group in Optimization. The conference was sponsored by the European Union (through the EPEAEK program), the Department of Mathematics of the Aegean University and the Center for Applied Optimization of the University of Florida, by the General Secretariat of Research and Tech nology of Greece, by the Ministry of Education of Greece, and several local Greek government agencies and companies. This volume contains a selective collection of refereed papers based on invited and contribut ing talks presented at this conference. The two themes of convexity and global optimization pervade this book. The conference provided a forum for researchers working on different aspects of convexity and global opti mization to present their recent discoveries, and to interact with people working on complementary aspects of mathematical programming.

Convex Analysis and Global Optimization


Convex Analysis and Global Optimization

Author: Hoang Tuy

language: en

Publisher: Springer

Release Date: 2016-10-17


DOWNLOAD





This book presents state-of-the-art results and methodologies in modern global optimization, and has been a staple reference for researchers, engineers, advanced students (also in applied mathematics), and practitioners in various fields of engineering. The second edition has been brought up to date and continues to develop a coherent and rigorous theory of deterministic global optimization, highlighting the essential role of convex analysis. The text has been revised and expanded to meet the needs of research, education, and applications for many years to come. Updates for this new edition include: · Discussion of modern approaches to minimax, fixed point, and equilibrium theorems, and to nonconvex optimization; · Increased focus on dealing more efficiently with ill-posed problems of global optimization, particularly those with hard constraints; · Important discussions of decomposition methods for specially structured problems; · A complete revision of the chapter on nonconvex quadratic programming, in order to encompass the advances made in quadratic optimization since publication of the first edition. · Additionally, this new edition contains entirely new chapters devoted to monotonic optimization, polynomial optimization and optimization under equilibrium constraints, including bilevel programming, multiobjective programming, and optimization with variational inequality constraint. From the reviews of the first edition: The book gives a good review of the topic. ...The text is carefully constructed and well written, the exposition is clear. It leaves a remarkable impression of the concepts, tools and techniques in global optimization. It might also be used as a basis and guideline for lectures on this subject. Students as well as professionals will profitably read and use it.—Mathematical Methods of Operations Research, 49:3 (1999)