Controller Design For Linear Systems Subject To Actuator Saturation

Download Controller Design For Linear Systems Subject To Actuator Saturation PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Controller Design For Linear Systems Subject To Actuator Saturation book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Control Systems with Actuator Saturation

Author: Tingshu Hu
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-12-06
Saturation nonlinearities are ubiquitous in engineering systems. In control systems, every physical actuator or sensor is subject to saturation owing to its maximum and minimum limits. A digital filter is subject to saturation if it is implemented in a finite word length format. Saturation nonlinearities are also purposely introduced into engineering systems such as control sys tems and neural network systems. Regardless of how saturation arises, the analysis and design of a system that contains saturation nonlinearities is an important problem. Not only is this problem theoretically challenging, but it is also practically imperative. This book intends to study control systems with actuator saturation in a systematic way. It will also present some related results on systems with state saturation or sensor saturation. Roughly speaking, there are two strategies for dealing with actuator sat uration. The first strategy is to neglect the saturation in the first stage of the control design process, and then to add some problem-specific schemes to deal with the adverse effects caused by saturation. These schemes, known as anti-windup schemes, are typically introduced using ad hoc modifications and extensive simulations. The basic idea behind these schemes is to intro duce additional feedbacks in such a way that the actuator stays properly within its limits. Most of these schemes lead to improved performance but poorly understood stability properties.
Saturated Control of Linear Systems

This book deals with a combination of two main problems for the first time. They are saturation on control and on the rate (or increment) of the control, and the solution of unsymmetrical saturation on the control by LMIs. It treats linear systems in state space form, in both the continuous- and discrete-time domains. Necessary and sufficient conditions are derived for autonomous linear systems with constrained state increment or rate, such that the system evolves respecting incremental or rate constraints if any. A pole assignment technique is then used to solve the problem, giving stabilizing state feedback controllers that respect non-symmetrical constraints on control alone or on both control and its increment or rate. Illustrative examples show the application of these methods on academic examples or on such real plant models as the double integrator system. This problem is then extended to various others including: systems with constraints and perturbations; singular systems with constrained control; systems with unsymmetrical saturations; saturated systems with delay, and 2-D systems with saturations. The solutions obtained are of two types: necessary and sufficient conditions solved with linear programming techniques; and sufficient conditions under LMIs. A new approach extends existing techniques for dealing with symmetrical saturations to take direct account of unsymmetrical saturations into account with LMIs. This tool enables the authors to obtain new results on continuous- and discrete-time systems. The book uses illustrative examples and figures and provides many comparisons with existing results. Systems theoreticians interested in multidimensional systems and practitioners working with saturated and constrained controllers will find the research and background presented in Saturated Control of Linear Systems to be of considerable interest in helping them overcome problems with their plant and in stimulating further research.