Contrast Properties Of Entropic Criteria For Blind Source Separation


Download Contrast Properties Of Entropic Criteria For Blind Source Separation PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Contrast Properties Of Entropic Criteria For Blind Source Separation book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Contrast Properties of Entropic Criteria for Blind Source Separation


Contrast Properties of Entropic Criteria for Blind Source Separation

Author: Frédéric Vrins

language: en

Publisher: Presses univ. de Louvain

Release Date: 2007


DOWNLOAD





In the recent years, Independent Component Analysis has become a fundamental tool in signal and data processing, especially in the field of Blind Source Separation (BSS); under mild conditions, independent source signals can be recovered from mixtures of them by maximizing a so-called contrast function. Neither the mixing system nor the original sources are needed for that purpose, justifying the "blind" term. Among the existing BSS methods is the class of approaches maximizing Information-Theoretic Criteria (ITC), that rely on Rényi's entropies, including the well-known Shannon and Hartley entropies. These ITC are maximized via adaptive optimization schemes. Two major issues in this field are the following: i) Are ITC really contrast functions? and ii) As most of the algorithms look in fact for a local maximum point, what about the relevance of these local optima from the BSS point of view? Even though there are some partial answers to these questions in the literature, most of them are based on simulations and conjectures; formal developments are often lacking. This thesis aims at filling this lack as well as providing intuitive justifications, too. The BSS problem is stated in Chapter 1, and viewed under the information theory angle. The two next chapters address specifically the above questions: Chapter 2 discusses the contrast function property of ITC while the possible existence of spurious local maximum points in ITC is the purpose of Chapter 3. Finally, Chapter 4 deals with a range-based criterion, the only “entropy-based” contrast function which is discriminant, i.e. free from spurious local maxima. The interest of this approach is confirmed by testing the proposed technique on various examples, including the MLSP 2006 data analysis competition benchmark; our method outperforms the previously obtained results on large-scale and noisy mixture samples obtained through ill-conditioned mixing matrices.

Independent Component Analysis and Signal Separation


Independent Component Analysis and Signal Separation

Author: Mike E. Davies

language: en

Publisher: Springer Science & Business Media

Release Date: 2007-08-28


DOWNLOAD





This book constitutes the refereed proceedings of the 7th International Conference on Independent Component Analysis and Blind Source Separation, ICA 2007, held in London, UK, in September 2007. It covers algorithms and architectures, applications, medical applications, speech and signal processing, theory, and visual and sensory processing.

Independent Component Analysis and Blind Signal Separation


Independent Component Analysis and Blind Signal Separation

Author: Carlos G. Puntonet

language: en

Publisher: Springer Science & Business Media

Release Date: 2004-09-17


DOWNLOAD





tionsalso,apartfromsignalprocessing,withother?eldssuchasstatisticsandarti?cial neuralnetworks. As long as we can ?nd a system that emits signals propagated through a mean, andthosesignalsarereceivedbyasetofsensorsandthereisaninterestinrecovering the originalsources,we have a potential?eld ofapplication forBSS and ICA. Inside thatwiderangeofapplicationswecan?nd,forinstance:noisereductionapplications, biomedicalapplications,audiosystems,telecommunications,andmanyothers. This volume comes out just 20 years after the ?rst contributionsin ICA and BSS 1 appeared . Thereinafter,the numberof research groupsworking in ICA and BSS has been constantly growing, so that nowadays we can estimate that far more than 100 groupsareresearchinginthese?elds. Asproofoftherecognitionamongthescienti?ccommunityofICAandBSSdev- opmentstherehavebeennumerousspecialsessionsandspecialissuesinseveralwell- 1 J.Herault, B.Ans,“Circuits neuronaux à synapses modi?ables: décodage de messages c- posites para apprentissage non supervise”, C.R. de l'Académie des Sciences, vol. 299, no. III-13,pp.525–528,1984.