Continuum Models For Materials With Microstructure


Download Continuum Models For Materials With Microstructure PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Continuum Models For Materials With Microstructure book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Continuum Models for Materials with Microstructure


Continuum Models for Materials with Microstructure

Author: H.-B. Mühlhaus

language: en

Publisher:

Release Date: 1995


DOWNLOAD





Continuum Models for Materials with Microstructure Edited by H. B. Mühlhaus, CSIRO, Nedlands, Australia When the characteristic length-scale (‘fabric dimension’) of the microstructure of materials is not small when compared to the macroscopic dimensions, the well established framework for the modelling of deformation processes for simple materials needs enhancement. To introduce an internal length scale, one has to resort to continuum models such as Nonlocal Theories, Cosserat or Gradient-type Models, Discrete Element and Lattice Theories or modified Viscoplastic Models. These new approaches are addressed in this volume. It includes contributions from research areas as diverse as bio-mechanics, concrete engineering and solid state physics. Generalised continuum models and its applications are presented and complemented by numerical and analytical tools for the solution of boundary value problems.

Generalized Continua as Models for Materials


Generalized Continua as Models for Materials

Author: Holm Altenbach

language: en

Publisher: Springer Science & Business Media

Release Date: 2014-07-08


DOWNLOAD





This volume presents contributions describing the micro- and macro-behaviours, new existence and uniqueness theorems, the formulation of multi-scale problems, etc. and now it is time to ponder again the state of matter and to discuss new trends and applications. The main focus is directed on the following items - Modelling and simulation of materials with significant microstructure, - Generalized continua as a result of multi-scale models, - Multi-field actions on materials resulting in generalized material models, and - Comparison with discrete modelling approaches

Wave Propagation in Materials for Modern Applications


Wave Propagation in Materials for Modern Applications

Author: Andrey Petrin

language: en

Publisher: BoD – Books on Demand

Release Date: 2010-01-01


DOWNLOAD





In the recent decades, there has been a growing interest in micro- and nanotechnology. The advances in nanotechnology give rise to new applications and new types of materials with unique electromagnetic and mechanical properties. This book is devoted to the modern methods in electrodynamics and acoustics, which have been developed to describe wave propagation in these modern materials and nanodevices. The book consists of original works of leading scientists in the field of wave propagation who produced new theoretical and experimental methods in the research field and obtained new and important results. The first part of the book consists of chapters with general mathematical methods and approaches to the problem of wave propagation. A special attention is attracted to the advanced numerical methods fruitfully applied in the field of wave propagation. The second part of the book is devoted to the problems of wave propagation in newly developed metamaterials, micro- and nanostructures and porous media. In this part the interested reader will find important and fundamental results on electromagnetic wave propagation in media with negative refraction index and electromagnetic imaging in devices based on the materials. The third part of the book is devoted to the problems of wave propagation in elastic and piezoelectric media. In the fourth part, the works on the problems of wave propagation in plasma are collected. The fifth, sixth and seventh parts are devoted to the problems of wave propagation in media with chemical reactions, in nonlinear and disperse media, respectively. And finally, in the eighth part of the book some experimental methods in wave propagations are considered. It is necessary to emphasize that this book is not a textbook. It is important that the results combined in it are taken “from the desks of researchers“. Therefore, I am sure that in this book the interested and actively working readers (scientists, engineers and students) will find many interesting results and new ideas.